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For each (abstract family of languages) A F L  .LP, two families of languages, the 
family f(f~,o) of nondeterministic and the family ~(.W) of deterministic two-way 
a-transducer mappings of languages in .LP are defined. For each (abstract family of 
acceptors) AFA ~,  two associated AFA, ~ c  and 9 D ,  are defined. It is proved that 
~f(~c) = j-(.fz(~)), ~ (~D)  = ~(.W(~)),  and J - (~(~D))  = -L~~ If s is an AFL, 
then J - ( ~ )  and . ~ ( ~ )  are full AFL and are closed under reversal. If  s is a full 
principal AFL, then so is .W(o,qa). If  a full AFL ~ is closed under substitution, then 
so are .7(2#) and .~(s162 If s is a full AFL, then each one-letter language in ~(~q~) 
is also in ~ .  For each AFL -f', .~ra~(~r = ~ ( ~ )  and 3-~a(oW) = f(oW). In contrast, 
if ~o is a subAFL of the family of context-free languages, then ~ J - ( ~ )  :/: •(.W) and 
hence JJ-(=W) ~ .7(_W). 

1. INTRODUCTION 

Of  the various finite-state t ransducers  in the l i terature,  the one which  has recent ly 

been  receiving the  mos t  a t tent ion is the one-way  a- t ransducer .  One  reason for th is  

is its p rominen t  role in (abstract  f ami ly  of  languages) A F L  theory.  F o r  example,  it 

was shown in [6] that  full A F L  are closed under  one-way  a- t ransducers .  I n  v iew of 

the impor tance  of  one-way a- t ransducers  for families of  languages, the  ques t ion  

arises as to the significance of  two-way  a- t ransducers  for families of languages. T h e  

purpose  of this paper  is to investigate,  in a general  setting, the  two-way  a - t ransducer  

and its connect ion  wi th  families of  languages, especially A F L .  

Historically,  a n u m b e r  of  two-way  finite-state devices have been  s tudied  in connec-  

t ion wi th  families of  languages. T w o - w a y  general ized sequent ia l  machines  (2 gsm) 

were  in t roduced  by A h o  and U l l m a n  in [1] and  used to characterize abstract  famil ies  

of  two-way  determinis t ic  languages. T w o - w a y  sequent ial  t ransducers  (2 st) were  

defined by Ehr ich  and Yau in [2] and some propert ies  of  two-way  mappings  of  regular  
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and context-free languages were examined. In Theorem 4.8 of [2], the 2 st mapping 
of a regular set was shown to be equivalent to a special stack language related to the 
checking acceptor language [11]. Both nondeterministic and deterministic two-way 
finite-state transducers (2 nft and 2 ft) were defined by Rajlich in [13], and the equiv- 
alence of the family of languages generated by the 2 nft and the family of checking 
acceptor languages was shown. 

In the initial phase of the present research, it was observed that the above mentioned 
results of Ehrich and Yau, and Rajlich could be combined to show the equivalence 
of the two-way a-transducer mappings of the regular sets to the family of the checking 
acceptor languages. It then seemed feasible to attempt to extend this result by charac- 
terizing, in a similar manner, the families of two-way a-transducer mappings of full 
AFL. This was accomplished by finding (abstract family of acceptors) AFA 
characterizations for both the families of nondeterministic and deterministic two-way 
a-transducer mappings of full AFL. (These AFA are generalizations of the family 
of checking acceptors, and differ only in that words from languages other than 
regular sets can be written on their checking stacks.) It was then discovered that these 
characterizations were most appropriate for studying many properties of the families 
of the nondeterministic and deterministic two-way a-transducer mappings of AFL. 

This paper is divided into five sections in addition to the present introductory 
section. In Section 2, Y and Fa ,  certain families of nondeterministic and deterministic 
two-way a-transducers, respectively, are defined. It is shown that J - ( ~ )  is closed 
under reversal and under one-way a-transducers for each family .~. If ~a is closed 
under marked �9 and either marked u or marked ", then Y ( ~ )  is a full A F L  

In Section 3, a structured-storage AFA 9 c , called the "AFA of auxiliary 9-storage 
checking acceptors," is associated with each AFA 9 .  It is shown that ~a(gc) ---- 
J'(oLf(9)), where 3 - ( ~ ( 9 ) )  is the family of nondeterministic two-way a-transducer 
mappings of languages in ~Lf(9). 

In Section 4, some properties which are preserved by 3-  are studied. If  oW is a full 
AFL closed under substitution or properly contained in the family of context-sensitive 
languages, tiaen so is J-(AQ. If .Lf is a full principal AFL, then so is j - (of) ,  and a full 
generator for Y(L,r can be constructed from a full generator for ~f. 

In Section 5, a structured-storage AFA 9 D ,  called the "AFA of auxiliary 9-storage 
counting checking acceptors," is associated with each AFA 9 .  It is shown that 
cf(gD) = J-a(-Lf(9)), the family of deterministic two-way a-transducer mappings 
of ~cf(9). It is also noted that closure under substitution is preserved by ~ .  
Finally, it is proved that each one-letter language in ~(~Lf), for ~ a full AFL, is 
also in ~f. 

In Section 6, the composition of 3" and ~ is studied. It is first shown that for 
each AFL ~f, ~ a . ~ ( ~  of) -- ~ (S r  and 3"~( s162  = 5,~(~f). As a corollary, it follows 
that J-(~f(gD)) ~- ~ ( 9 c )  for each AFA 9 .  Another consequence is that ~(~Lf) is a 
full AFL closed under reversal for each AFL .Lf. Necessary and sufficient conditions 
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for f a J - ( ~ )  = J ' (5r  and Y-'J~(~) = j--(c~o) are then given. These conditions are 
used to show that if ~q~ is a subAFL of the family of context-free languages, then 
~aJ-(oZ') =/= 9--(.Z ~) and hence J-J-(~,r 56 ~-(~q~o). 

2. Two-WAY A-TRANSDUCERS 

As mentioned in the previous section, the purpose of this paper is to study the 
connection between two-way a-transducers and families of languages, especially AFL.  
We assume that the reader is familiar with the concepts of AFL  theory, especially 
as presented in [3, 6, 7, 8, 10, and 12]. In this section we define two-way a-transducers 
and prove some elementary results concerning two-way a-transducers and families 
of languages. 

We begin with the definition of two-way a-transducers. 

DEFINITION. A "two-way a-transducer" is an 8-tuple T = (K,  Z1,272, H, So, r $,F) 
where 

(1) K, 271, and 2J~ are finite sets of "states," " input  symbols," and "output  
symbols," respectively; 

(2) H i s  a finite subset of K • 271 • 272* • K • {--, 0, +} ;  

(3) s 0 , the "start  state," is in K;  

(4) r and $ are special symbols in 271 ("left" and "right endmarkers," respec- 
tively); and 

(5) F, the set of "final states," is a subset of K. 

Remark. The  terms "two-way a-transducer" and "nondeterministic two-way 
a-transducer" will be used synonomously. 

We now define the moves of the two-way a-transducer. 

DEFINITION. Let  v-- be a relation on K • (271 t3 {q })* • 272* defined as follows 
(for bx, b 2 in Z'2*, 1 a new symbol, and x, ~ in  271", Xl, x2, x3 in 271, Y in (271 - -  {r $})* 
such that XXlXz~ = xx3g = r 

(1) (p, XXlX, ~ ~, ba) ~-- (q, xx l  1 x2~, bib2) if (p, x2, b2, q, - - )  is in H;  

(2) (p, xx 1 ] x2g, bx) ~-- (q, XxX2 q ,g, 6162) if (p, x l ,  b2, q, + )  is in H; and 

(3) (p, xx 3 ~ ~, bl) ~ (q, xx 3 1 ~, bib2) if (p, x~, b~, q, 0) is in H. 

Let  ~- be the reflexive, transitive closure of ~--. 

Notation. For each two-way a-transducer T = (K, 271,272, H, so, r $, F)  and 
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each w in (27: - -  {r $))*, let T(w) = {z in 272* I(s0, r 1 w$, ~) ~-  (p, r  z) for 
some p in F}. For every L C (271 - -  {r $})*, let T(L) : U~lnL T(w). 

We now define a subset of the set of all two-way a-transducers. 

Notation. Let J be the family of all two-way a-transducers such that H is a finite 
subset of K • X 1 • (272 u {~}) • K • {-- ,  0, +} .  For  ~ ,  a family of  languages, let 
J - ( . ~ )  ~ {T(L) [ T in .~-, L in ~q~). Clearly, ~--(~v) = {T(L)] T a two-way a-transducer, 
L i n  ~ ) .  

Note that the two-way a-transducer defined here is a nondeterministic variation 
of the 2 gsm defined by Aho and Ullman in [1]. 

The  two-way a-transducer differs from the two-way sequential transducer (2 st) 
of Ehrich and Yau [2] in that the 2 st has no endmarkers and no accepting states. 
The  2 st accepts by moving its pointer to the blank at the right of the input word. 
Ehrich and Yau discuss ~ ( ~ )  and ~(-~q~cv), the 2 st mappings of ~ ,  the family of 
regular sets, and of ~ c v ,  the family of  context-free languages, respectively. They  
prove that ~ ( ~ )  and ~(~C~cF ) are full A F L  closed under reversal and substitution. 
It  can be shown that ~5P2(~ ) = ~ - ( ~ )  and ~ ( -~cv)  = J-(~'qcv), the proof depending 
on the fact that L is in 9~ (or ~ c r )  if and only if r is in ~ (or ~cv)- 

Finally, the two-way a-transducer may be compared with the two-way nondeter- 
ministic finite-state transducer (2 nft) introduced by Rajlich [13]. Each 2 nft uses a 
regular set 27:* as input and generates a language in the family ~ N F T "  I t  can be 
proved that ~L~2NFT = f(~), the proof depending on the fact that the finite-state 
control of the 2 nft is used to check whether or not an input word in 271" is in some 
particular regular set R. 

DEFINITION. A "deterministic two-way a-transducer" T = (K1, Z~I, 272, H,  $0, r $, F )  
is a two-way a-transducer such that 

(1) for eachp  in K 1 and a in 271, there is at most one 5-tuple (p, a, b, q, d) in H, 
and 

(2) for p in F there is no 5-tuple in H of the form (p, $, b, q, d). 

Remark. The  deterministic two-way a-transducer defined here is equivalent to 
the 2 gsm of [1]. 

Notation. Let ~ a  be the family of all deterministic two-way a-transducers 
(K1,271, X2, H, so, r $, F)  for which b is in 272 t3 {~) if (p, a, b, q, d) is in H. For each 
family .W of languages, let Y a ( ~ )  = {T(L)[ T is in J a ,  L is in ~q~). I t  is clear that 
~ a (~ ' )  ~ {T(L)I T is a deterministic two-way a-transducer, L is in .,q~}. 

Remark. For each T = ( K : ,  Z1,272, H, So, r $, F) in Y a ,  each symbol of the 
input word is read fewer than # (K~) + 1 times in any accepting computation. 1 

: For each set K, #(K) denotes the number of elements in'K. 
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We now present some elementary results concerning J ( ~ ) ,  for families of 
languages L,e. 

THEOREM 2.1. For each family of languages ~ ,  J-(~L#) is closed under reversal and 
under one-way a-transducers, z 

Proof. I l L  is in 0~ and T is in ~--, there exists T '  in J -  such that T'(L) = [T(L)] R. 
T '  operates as follows. For  a word w in L, T '  moves to the right end of r goes to a 
final state of T, and then simulates, in reverse, the moves of T. (For  example, if T 
reads a in state p, writes b, and moves right to a '  in state q, then T '  reads a '  in state 
(q, a'),  writes b, and moves left in state (p, a). T '  continues only if it now reads a.) 
I f  T'  reaches r in the start  state of T, then T '  moves to the right end of r in an 
accepting state. Thus  J - ( ~ )  is closed under  reversal. 

For  L in ~ and a one-way a- t ransducer  M, there exists T in Y such that T(L) 
M(T(L)) .  (f~ is constructed so that it uses pairs of states of M and T to simulate 
each in turn.)  Thus  3 " ( ~ )  is closed under  one-way a-transducers.  

TBF.OtU~M 2.2. I f  ~ is a family of languages closed under marked �9 and either marked 
~3 or marked ", then J - ( ~ )  is a full  A F L .  z 

Proof. If  ~ is closed under  m a r k e d . ,  then for L in f ,  (cL)* is in S('. For  T in J - ,  
there exists T '  in 3-- such that T'((cL)*) = [T(L)]*. Hence J-(.~e) is closed u n d e r ,  if 

is closed under marked . .  
I f  ~.e is closed under marked u ,  then Y(S~)  is closed under  u ,  since for L 1 , Lz 

in .Lf and T1, T~in J - ,  there exists T a in J "  such that T3(ctL 1 k3 c2L2) = T:(Lt) u T2(Lz). 
I f  .Lf is closed under  marked -, then ~J-(.~) is dosed  under  -, since for L 1 , L 2 in .oq' 

and Tx, T 2 in 3", there exists T~ in Y such that Tz(LlcL2) = Tt(L1) �9 T2(L~). 
Thus,  if ~ is closed under  marked , and marked k3, then 3- - (~)  is a full A F L  by 

Theorem 2 of [12], since it is closed under  one-way a - t r a n s d u c e r s , . ,  and u .  I f  
.La is closed under  m a r k e d ,  and marked . ,  then J ( ~ )  is a full A F L  by Theorem 1 of 
[12], since it is closed under one-way a - t r a n s d u c e r s , . ,  and ". 

COROLLARY. I f  .~  is an A F L ,  then ~--(.~') is a full  A F L .  

Remark. I t  is shown in Corollary 2 of Theorem 6.1 that ~a(L~ a) is a full A F L  
closed under  reversal i f L  is an A F L .  

We close this section with a result which be useful later. 

THFOI~M 2.3. For each A F L  ~ ,  ~- - (~)  = ~d--(g(Aa)) and ~a(oW) = Ja(-~:(Aa)). ̀  

The reversal of the work w = x: "'" x~, n > 0, each x~ in 27, is the word w R = x~ "'- x : .  
The reversal of the languageL is the languageL R : (w R [ w inL}. 

a The author is grateful to the referee for suggesting this form of the theorem. 
4 For each set of languages &o, ~-(~#) is the smallest full AFL containing :.5- a. 
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Proof. We first prove that ~--(.~) = 3- (~(~r  5 For an arbitrary homomorphism 
h i , T a in J - ,  and L in _~o, there exists T2 in ~-- and an E-free homomorphism h 2 such 
that T2(h2(L) )=  Tl(ha(L)). (If ha(a):~ E, let h2(a ) = hl(a ) and if ha(a ) = E, let 
h2(a ) = e. T 2 writes no output while reading e, but otherwise simulates T a , remem- 
bering in its state the direction T1 is moving.) Thus  J ( ~ )  = Y ( ~ ( ~ ) ) ,  since ~o 
is closed under E-free homomorphism. Hence j ( ~ o )  = J ' ( o~ (~ ) ) ,  since if ~q~ is an 
AFL,  then 0~(~')  = .5~(~) by Lemma 2.2 of [9]. The  proof that 5Ya(~) = J a ( ~ ( ~ ) )  
is similar. 

3. AUXILIARY ~-STORAGE CHECKING ACCEPTORS 

In  this section we associate with each AFA ~ a structured-storage AFA ~ c ,  
called the " A F A  of auxiliary ~-storage checking acceptors." We then show in Theorem 
3.1 that ~.W(~c), the family of languages accepted by ~ c ,  is J ' ( ~ ( ~ ) ) ,  the family 
of two-way a-transducer mappings of languages in ~8(~). This result will play a key 
role in the study of the nondeterministic two-way a-transducer mappings of AFL.  

Given an AFA ~ ,  we now informally define ~ c .  Acceptors in ~ c  have two types 
of storage, one a stack and the other an auxiliary storage of the same type as ~ .  Each 
acceptor in ~ c  operates in two modes, a writing mode and a checking mode. The  
auxiliary storage is used only while the acceptor is in the writing mode and it is used 
in such a way that the words written on the stack form a language in .W(~). Once the 
word is written on the stack the acceptor operates in the checking mode. In this mode, 
the acceptor may enter the stack but no further writing is allowed until the storage is 
erased (in one step). The formal definition follows. 

DEFINITION. For each AFA (/2, ~) ,  where Q = (K, 27, / '2 ,12,  f2,  g2), let / '1 = ~', 
and I 1 = / ' 1  k3/'1 1 u {--,  + ,  0, E) with ~, - - ,  + ,  0 and E new symbols. Let f be 
the function from (/"1" • /'2*) • (11 • I3) into (/'1" • /'3*) u {Z} and g be the 
function from /'1" • /'3* into the finite subsets of / '1" • -P2* defined as follows 
(for x, g in / 'a* ,  xa, x2 i n / ' 1 ,  Y2 in / '2" ,  and u o in 13). 

(1) The "writing" mode: 

a. f ( ( x ,  Y2), (X1, //2)) = (XXl , f2(Y2, u2)) .6 

b. f ( ( x ,  Y2), (0, us) ) = (x, f2(Y2, u2)). 

c. f ( ( x ,  r2), (xa 1, us)) = (xxa 1, f2(Y2 , us)), wheref2(r2,  u2) = r 

5 .,~(5r = {h(L) [L in LP and h an arbitrary homomorphism}. 
If f2(~'2, u2) = { 6 ), then f((x, ~,z), (ut , u2)) = { ~ } for each ul in I1 �9 
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(2) The  "checking" mode: 

a. f((XXlX 2 1 ~' ~)' (-- ,  1 , ) )  = (xx 11 x~,  ~). 
b. f ( ( xx  1 1 x2z, e), (+ ,  1,)) = (xxlx 2 1 x, e). 

c. f ( (x  I ~, ~), (o, 1,)) = (x 1 ~, 4). 
d. f ( ( x x  I ~, e), (E, 1~)) = (4, ~). 

(3) a. g((E, 4)) = {(4, E)}. 

b. g((xxl,  72)) = {(xl, 7)1 Y in g202)}. 

c. g((xx x I ~, ~)) = {(x~ 1 ,0} .  

Then (g2c, .@c), where $2 c = (K, ..~, 1-' 1 X 1'2,11 X 13, f ,  g), is called the AFA of 
"auxiliary .@-storage checking acceptors." (We use .@c when g2 c is understood.) 

Note that what we have called the AFA of auxiliary -@-storage checking acceptors 
is technically not an AFA. However, we shall soon observe that it is closely related 
to an AFA. 

We now define the moves of acceptors in (Qc,  ~c) .  

DEFINITION. Let  D = (/s 271, 3, qo, F) be in .@c. A "configuration" C is a 
triple C = (q, w, (71,73)) where q is in K1, w is in Zx*, )1 is in FI*, and Y3 is in/ '2*.  

Notation. Let  ~ be a relation on configurations defined as follows (for a in Z' 1 t3 {4} 
and w in 271"): (q, aT, 0 1 ,  )3)) w-- (q', w, (Y(, Y()) if there exist (~71, ~72) in g(Yl, 73) 
such that (q', (ul ,  u3)) is in 3(q, a, (~71, ~73) ) and f((71,73) ,  (Ul, u3)) = (7a', 73'). 
Let  ~- be the transitive, reflexive closure of ~---. 

An auxiliary .@-storage checking acceptor defines a language as follows. 

Notation. For each D = (/s Z'I, 3, qo, F)  in.@c, letL(D) = (w [(q0, w, (4, 4)) #-  
(q, 4, (~, ~)) for some q in F)  and let ~'(.@c) = {L(D)[ D in .@c}. 

It  is easily seen that the AFA of auxiliary .@-storage checking acceptors is a special 
instance of a structured-storage AFA as defined in [3]. Hence, by Theorem 1 of [3], 
it follows that .L~V(~c) is a full AFL.  

We now consider ~ c ,  a special family of auxiliary ~-storage checking acceptors 
which 

(1) do no reading of input while in the writing mode, and 

(2) use the E instruction only once in accepting a word. 

DEFImTION. Let  ~ c  be the family of all D = (K1, Z'I, 3, P0, F) in .@c such that 8 
has the following properties. 

(1) If  8(p, a, (y, z)) is defined for p i n / s  y in F 1 u (~} and z in g2(F~*), then 
a = e ;  
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(2) If (q, (E, 1,)) is in 3(p, a, (y 1, ~)), then 3(q, a', (E, e)) is undefined for all a' 
in 2:1". 

Notation. For each AFA 9 ,  let ~ ( ~ c )  = {L(D)] D in ~c}- 
For technical reasons, we next show that the family of languages accepted by ~ c  

is equivalent to the family accepted by ~ c .  

LEMMA 3.1. For each AFA 9 ,  SC(~c) ~ ~ ' (~c) .  

Proof. Since ~ c  _C ~ c ,  we have r C .~z~ To show that ~ ( ~ c )  C ~fF(~c) , 
we prove that for each D in ~ c  there exists D' in ~ c  such that L(D) = L(D'). Let 
D = (K1,2:1,3, P0, F) be in ~ c  and assume that the moves defined by 8 are numbered 
in some way. 

Case 1. Assume that D satisfies property (2) of the definition of -~c. Let D' 
be constructed so that it nondeterministically writes a word, operating as follows. 

A. The writing mode: In this mode, D' uses its auxiliary storage in exactly the 
same way D does, but D' reads no input. 

(1) If D writes the symbol y on its checking stack using the ith move of 3, 
and the move is not a 0-move, then D' writes the symbol (y, i) without 
reading any input. 

(2) If D uses a 0-move, the j th  move of 8, then D' writes the symbol (~,j) on 
its checking stack without reading any input. 

(3) D' marks its final checking stack symbol in some way. 

B. The checking mode: 

(1) Without using its auxiliary storage, D' first verifies that the word on its 
checking stack is a word which D can write on its checking stack. D' also 
reads the part of the input word which D reads while it is in the writing mode. 
D' moves as follows. 

a. D' moves to the left end of its checking stack word. 

b. If D' reads the checking stack symbol (y, i) or (~, i), it reads the input 
symbol which D reads using the ith rule. D' also moves right one symbol 
on the checking stack. 

(2) D', having verified that the checking stack word is correct, now reads the 
remainder of the input word, simulating the checking moves of D. For these 
moves, all the second components of the checking stack symbols as well as 
all the barred symbols are ignored by D'. 

It is clear that L(D') ~ L(D) and that D' reads no input while it is in the writing 
mode. 

57111011-7 
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Case 2. Assume that D does not satisfy property (2) of the definition of ~ c .  
Then  D writes the words w x .... , wn, n / >  1, on its checking stack, using and erasing 
each word in turn. There exists/)  in ~ c  which writes xowl'x o "" xow,~' on its checking 
stack, using only e-moves. (Assume that x 0 is a new symbol.) 

Each w,' is of the same form as the words in Case 1, that is, for each i, wi' contains 
each symbol of w, as well as the number of the rule which D used to write that symbol. 
When D erases w, and writes wi+l, t h e n / )  simulates D by moving right over x 0 and 
verifying that w~+ 1 is written on its checking stack. As in Case I, D, reading w'i+ 1 , 
then simulates all the checking moves of D on w,+ 1 . When D erases its final stack 
word w,, and goes to an accepting state, t h e n / )  simulates D by erasing its stack word 
and going to an accepting state. No further moves are defined for/~. Clearly, L(/)) = 
L(D) and the proof of the lemma is complete. 

We now establish that the languages which are written on the stacks of acceptors 
in ~ c  are related to languages in ~q'(~). 

Notation. For D = (/s X1,3,  q0, F)  in ~ c ,  let S(D) = {y in / '1"  [(q0, ~, (~, E)) ~-  
(p, E, (y ~, ~))} and let 5 : ( ~ c )  ~ {S(D)[ D in ~c}.  

LEMMA 3.2. For each AFA _@, S : (~c )  = oW(.@). 

Proof. To show J ( ~ c )  C ~ ( ~ ) ,  let D be in ~ c  and construct D '  in ~ such that 
L(D') ~- S(D). D' operates as follows. Since the storage of D' is the same as the 
auxiliary storage of D, the reading moves of D '  are defined so that D '  reads exactly 
what D writes on its checking stack. Since D can read the last checking stack symbol 
it has written, D '  must remember in its state the last symbol it has read. If  D writes 
its final checking stack symbol, then D'  goes to an accepting state. 

To show that ~q~(~) _C 5~(~c) , assume that D is in 9 .  Cons t ruc t / )  in ~ c  such that 
if D reads an input symbol, then D writes that symbol on its checking stack, using its 
auxiliary storage in exactly the same way that D uses its storage. I f  D reads an input 
symbol y and goes to an accepting state, then / )  writes v 1 on its checking stack. 
Then S(/)) = L(D) and the proof is complete. 

We are now able to establish a characterization result for the family of two-way 
a-transducer mappings of a full AFL.  

THEOREM 3. t, For each AFA ,@, ,LW(~c) = ,Y~(oW(_@)). 

Proof. Since ~ ( ~ c )  = ~qP(~c) and ~,a(~) = SF'(~c) , we need only prove that 
d~(~c) --  J~(Zr(~c) ). To  prove that ~ ( ~ c )  _C Y ( 5 : ( ~ c )  , let L = L(D) where D is 
in ~ c  �9 First we cons t ruc t / )  in 6~ c which simulates all the moves of D except that 
when D writes its final stack symbol y and goes to state p, t h e n / )  writes (p, y) as its 
final stack symbol. Next T in f is constructed such that for each input word in 
S(D), T moves its pointer right to the symbol (p, y), goes to state p, and simulates the 
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checking moves o f / ) ,  writing the word w h i c h / )  reads. W h e n / )  erases its checking 
stack word and goes to an accepting state, T moves right to $ and goes to an accepting 
state. Then  T(S(D)) = L(D) ~- L(D) and ~ ( - ~ c )  C j - (SP(~c)) .  

T o  prove that ~-(5r ) _C 5a (~c)  , let D be in ~ c  and T be in ~--. Construct 
D '  in ~ c  such that if D writes a word w on its checking stack, then D' writes r 
I f  D accepts e without writing on its checking stack, then D'  writes r After writing $, 
D '  moves its pointer left to r and then simulates the moves of T, reading the word 
which T writes. When T reaches $ in an accepting state, D '  erases r and goes to an 
accepting state. Then  L(D') = T(S(D)) and the proof is complete. 

The  construction in Theorem 3.1 appears to make ~,~(~) dependent on the choice 
of AFA for 5r This  is not the case, however, as the next result shows. 

COROLLARY. Let ~ andS'  be AFA such that ~( .~)  = ~ ( ~ ' ) .  Then ~q(~c)  = 5e (~c ' )  

Proof. ~ ( ~ c )  = j-(~o(.@)), by Theorem 3.1, 

= j-(s since ~ ( ~ )  = ~q'(~'), 

5r  by Theorem 3.1. 

Remark. Suppose ~ is the AFA which does not depend on its storage. Since 
~ c  does not depend on its auxiliary storage, ~z~ = ~cA , where 2TcA is the family 
of checking acceptor languages [11]. By Theorem 3.1, 5 e ( ~ c ) ~  3-(5q(~))  and 
~ - - (~ (~ )  - - J - - ( ~ )  since ~o(~)  = ~ .  So s176 = J - ( ~ ) ,  which is equivalent to the 
statement proved by Rajlich [13] that ~cn  = ~NFX.  

4. PRESERVATION OF PROPERTIES BY 

In  this section we study some properties which are preserved by ~Y-. We prove in 
Theorem 4. l that if ~o is a full A F L  closed under substitution, then so is j-(s 
We show in Theorem 4.2 that if ~q is a full principal AFL, then so is Y ( ~ ) .  Finally, 
we show in Theorem 4.3 that if ~o is a full A F L  properly contained in the family of 
extended context-sensitive languages, then so is J'(~W). A corollary gives an example 
of an A F L  ~,o, properly contained in the extended context-sensitive languages, such 
that ~-'(5r = .~o. We now turn to our first result. 

THEOREM 4.1. For each AFA ~,, s is closed under substitution if ~ ( ~ )  is. 

Proof. The  proof is a variation of the proof in [11] that 5ecA is dosed under 
substitution. Assume that D is in ~ c ,  L(D) C_ ZI*, S(D) C_/'1" , and ~- is a substitution 
on L'l* defined for each a in 271 by ~-(a) = aL(Da), where Da is in ~ c .  (It  suffices to 
consider substitutions of this type since 5r  is a full AFL.)  Then  let 
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L = U.lnz~ aS(Da) and let a be the substitution on /"x* defined for each b in/"1 by 
a(b) = bL*. (This places strings of checking stack words for the Da between symbols 
of P 1 .) Since ~ ( ~ )  is closed under substitution and the S(Da) are in s a(S(D)) 
is in ~qo(~). Then  D'  in ~ c  is constructed such that it writes words in ~r(S(D)) on its 
checking stack. Then  D '  simulates D while reading symbols of 271 and, without losing 
its place on the simulated checking stack of D, simulates D~ while reading words of 
L(Da). Hence L(D') = r(L(D)) and ~ ( ~ c )  is closed under substitution. 

COROLLARY. If .~  is a substitution closed full  AFL,  then so is J ' ( .~) .  

Proof. I f  ~ is a full AFL,  then ~ = ~ ( ~ )  for some AFA ~ .  Then  3-(s = 
J ( ~ ( ~ ) )  and by Theorem 3.1, J - ( - ~ ( ~ ) )  = ~ ( ~ c ) .  Since . ~  = .oq~(~) is a substi- 
tution closed full AFL,  so is 5r  , by Theorem 4.1. Hence 3-'(5r = oo9~ is a 
substitution closed full AFL.  

One question often raised about a full A F L  is whether or not it is full principal. 
We now show that ~" preserves full principal AFL.  

DEFINITION. An A F L  ~ is "full principal" if there exists a language L, called a 
"full generator," such that &o = o~(L).7 

THEOREM 4.2. Let ~ be an AFA such that .~q~(~) is a full  principal A F L  over a 
countable alphabet. Then ~ ( ~ c )  is full  principal. 

Proof. Let  ($2, ~ )  be the AFA, where ~ = (K, 27 , / " s , /2 ,  f 2 ,  g2). By Lemma  2.1 
of [8] and the Corollary to Theorem 3.1, we may assume that ~ is finitely encoded. 
Thus  I s andg2(F2* ) are both finite. Since 27 is countable, L' = (a 1 ,..., a~ ,...}. For each 
n ~ 1, let A,  = {a 1 ,..., a,}. Let  (g2c, ~ c )  be the AFA of auxiliary ~-s torage  checking 
acceptors where ~ c  = (K, E,/"1 • /"2 , /1  • I2 ,  f ,  g). Let  (~2', ~ ' )  be the structured- 
storage AFA such that .O' = (K, 27, A s x / 2 ,  I1' x I 2 , f ' ,  g ' )  where I 1' = A s t3 
As 1 U {--,  0, + ,  E} and f '  and g '  are defined just as f and g, respectively. (This 
structured-storage AFA is equivalent to an AFA by Theorem 1 of [3].) For each 
D = (K1,27x, 8, P0, F)  in ~ c ,  the checking stack alphabet is in A for some n ~ 1, 
since it is finite. So for each D in ~ c  there exists D'  = (Ka'  , 271 , 8', P0, F ' )  in ~ '  such 
that the checking stack alphabet is in A S and L(D') = L(D). (This is done by allowing 
D '  to use al*a s whenever D uses at on its checking stack.) Thus  ~q~(~c)_C ~ ( ~ ' ) .  
Since ~ '  _C ~ c ,  5~(~ ' )  _C ~ ( ~ )  and therefore ~ ( ~ c )  = ~ ( ~ ' ) .  Since I 1' X I S and 
g'(As* • I's*) = {r al , as,  al 1, as 1 } • gs(Fs *) are both finite, the AFA equivalent 
to ~ ' ,  as constructed in Theorem 1 of [3], is finitely encoded. Thus  ~q~(~c) is full 
principal, since ~q~(~c) = ~cp(~,) and the AFA equivalent to 9 '  is finitely encoded. 

I f  an AFA ~ satisfies certain conditions, t h e n / ~ ,  the set of those words over the 

7 We write ~'(L) rather than the more formal .#((L}). 
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instruction alphabet of ~ which transform the empty storage back to the empty  
storage, is a full generator of ~ ( ~ ) .  By a construction similar to those in [7], an 
AFA ~ c '  can be constructed such that L#(~c '  ) = -~ (~c )  and L~b  is a full generator 
for .~c~ ) = Y ( . ~ ( ~ ) ) .  We omit the details. 

When a new family of languages is introduced, the question arises as to its relation 
to well-known families. The  following theorem relates to that question. I t  shows 
that the family of two-way a-transducer mappings of a full A F L  contained in the 
family of extended context-sensitive languages is itself contained in the family of 
extended context-sensitive languages. 

Notation. Let  -~cs be the family of context-sensitive languages and let -~'Ecs be 
the family of extended context-sensitive languages, i.e., ~aEC s = {L, L t.) {E}] L in ~'~cs). 

THEOm~M 4.3. I f  ~ is a full A F L  such that .LP ~ ~ECS, then 3 - ( i  a) ~ SPEc s . 

Proof. By the Corollary to Theorem 2.2, J ( ~ )  is a full A F L  if .,qo is. Since f E c s  
is not a full AFL,  it suffices to prove that ~ - ( ~ )  _C .LPEC s . 

The  proof that 3-(.LP) C ~ECS is a variation of the proof by Ehrich and Yau [2] 
that a two-way sequential transducer mapping of a context-free language is an ex- 
tended context-sensitive language. First, given T in 3 -  and a language L in .o~, an 
a-transducer M (corresponding to the 1st of [2]) and T '  in ~-- (corresponding to 
the 2st of [2]) are constructed such that T'(M(L)) = T(L) and for each w in T(L) 
there exists y '  in M(L) such that w is in T'(y') and l Y' I ~< ] w I. Then  an lba is con- 
structed which simulates M and T '  and which accepts T'(M(L)) = T(L). ThusT(L)  
is in ~ECS, SO that J-(~9 a) ~ .~aEC s . 

In [5] it is shown that each A F L  containing {e} has a largest full subAFL.  The  
largest full subAFL of ~ECS has an interesting property. 

COROLLARY. I f  s is the largest full subAFL of 5eBc s , then J - ( ~ )  = ~ .  

Proof. By Theorem 4.3, j - - (Se)~  s176 s and by the Corollary to Theorem 2.2, 
.~--(~a) is a full AFL.  Since &a is the largest full subAFL of SeEC s , j~(o,qt') C ~ ' .  Then  
J-(S~) = ~ since ~ C j-(~ca). 

In  conclusion, we note that if ~ is closed under complementation or intersection, 
then d~(~W) need not be. In  [11] Greibach shows that the family of checking acceptor 
languages, which we have shown to be equivalent to 3--(~), is not closed under 
complementation or intersection, even though ~ is. 

5. DETERMINISTIC Two-WAY A-TRANSDUCERS 

In  this section we duplicate, for deterministic two-way a-transducers, some of 
the results proved in Sections 3 and 4 for the nondeterministic two-way a-transducers. 
We first associate with each AFA ~ a structured-storage AFA ~ D ,  called the "AFA 
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of auxiliary ~-storage counting checking acceptors." By analogy with Theorem 3.1, 
we show in Theorem 5.1 that the family s of languages accepted by ~D is 
equivalent to the family Ja(~c~'(~)) of deterministic two-way a-transducer mappings 
of languages in oW(.~). We indicate in a remark that substitution is preserved by J a .  
One area in which J and ~a  differ is in their effect on one-letter languages. It is 
known that there are one-letter languages in f ( ~ )  - -  ~ ,  where ~ is the family of 
regular sets. But, in Theorem 5.2, we show that one-letter languages in Ja(oW) are 
in ~ for each full AFL  ~ .  

Given an AFA ~ ,  we now informally define the new family ~D of acceptors. 
~'D will be similar to the AFA ~ c  in that there are two types of storage, a stack and an 
auxiliary storage of the same type as ~ .  The  auxiliary storage will be used only while 
an acceptor in ~D is in the writing mode. While in the writing mode, the aceeptor 
writes symbols in F 1 X {1) on its stack. Once a word is written on its stack, the aceeptor 
operates in a checking mode. In this mode, each time the pointer moves left or right 
from a symbol on the stack, the integer appearing as the second component of the 
stack symbol is increased by one. Thus we have a count of the number of times a 
stack symbol has been visited. As in the case of ~ c ,  the symbol in / ' 1  may not be 
changed. The formal definition follows. 

DEFINITION. For each AFA (g2, ~ ) ,  where s =- (K,  X,  1'2, I~,  f z ,  g2), let/ '1 = 27, 
/1 = (/'a • t3 (_P~ X {1}) 1 ~ ) (F  1 x N x {--, + ) )  t_) {0, E), with 1 , + , - - , 0 ,  
and E new symbols and N the set of positive integers. Let  f be the function from 
((/'1 x N ) *  • /'2*) x ( / 1  x I 2 )  into ((/'1 x N ) *  X 1 " s * ) ~ { ~ }  and let g be the 
function from (/'a X N)* X /'2* into the finite subsets of (/'1 • N)*  X /'2* 
defined as follows (for x, ~ in  (1"1 x N)*,  x l ,  x2 in / ' 1 ,  )'2 in/ '2",  u2 i n / z ,  and i , j  in N). 

(1) The  "writing" mode: 

a. f((x,  72), ((Xl, 1), u2)) = (X(Xl, 1), fs()'2, u2)). 

b. f ( ( x ,  72), (0, us) ) = (x, fs(72 , u2)). 

c. f ( ( x ,  Y2), ((x, ,  1)q, us) ) = (x(xl,  1)~, f2(72, u2)), wheref2(Y2, u2) = E. 

(2) The  "checking" mode: 

a. f ( ( x ( x  1 , i)(x2 , j )  1 "~, E), ((x2 , j ,  - - ) ,  1,)) = (X(Xl, i) 1 (x2, j + 1)g, O- 

b. f ( ( x ( x l ,  i) q (x2 , j ) s  0 ,  ((Xl, i, + ) ,  1~)) = (x(x 1 , i + 1)(x 2 , j )  1 ~, 0 .  

c. f ( ( x ( x  I , i) 1 ~, 0 ,  (0, 1~)) ---- (x(x, ,  i) 1 ~, 0- 

d. f ( ( x ( xx ,  i) 1, "), (E, 1,)) =- (e, ,). 

(3) a. g( ( , , , ) )  = {(,, 0}. 

b. g((x(xl, l), Ts)) = {((xl , 1), 7) 1 7 in g2(7~)}. 

C. g((X(X 1 , i )  1 X, e)) = { ( ( x l , i )  1, e)}. 
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Then (QD, ~D), where -QD -~ (K, Z', (Ca • N)  • f ' 2 , /1  • I2,  f ,  g) is called the 
AFA of "auxiliary .~-storage counting checking acceptors." (We use ~D when s D is 
understood.) 

Remark. For each D = (K 1,271 , 8, q0,F)  in ~ o ,  GD is finite and there are a 
finite number of moves in 3. This implies that the stack pointer can move away from 
a stack symbol only a finite number of times in accepting a word. 

We note here that ~ o  is technically not an AFA, but it is a special instance of a 
structured-storage AFA. Thus ~-~f(~9) is a full AFL by Theorem 1 of [3]. 

As in Section 3, we define a subset of the previously defined AFA. Then we prove 
that the two families of acceptors are equivalent, in terms of languages accepted. 

DEFINITION. ~D is defined to be the family of a auxiliary ~-storage counting 
checking acceptors which 

(1) do no reading of input while in the writing mode, and 

(2) use the E instruction only once in accepting a word. 

LEMMA 5.1. For each AFA ~ ,  ~~ = ~(~D)-  

Proof. Clearly S ( ~ D )  _C ~~ Consider the reverse inclusion. The proof will 
be similar to the proof of Lemma 3.2. I f  D is in ~ D ,  then we construct D'  in -~D such 
that D' nondeterministically writes a word in S(D) on its stack along with the numbers 
of the rules which D would use in writing the same word. Then D'  returns to the left 
endof theword and checks that the stack word it has written could be written byD. Since 
each symbol is scanned once in moving left and once in the process described above, 
the count of each symbol used by D'  is two than the count of the corresponding symbol 
used by D. Hence ~ ( ~ D )  C ~CP(~D). 

We now define some terms related to the languages which are written on the 
checking stacks of acceptors in ~D �9 After a preliminary lemma, we are able to charac- 
terize the family of deterministic two-way a-transducer mappings of languages in 
~ ( ~ )  in terms of 5r 

Notation. Let L(D) and S(D) be defined for D in ~ o  exactly as for acceptors in 
~ c .  For D in f i b ,  let S'(D) ~ h(S(D)), where h is the homomorphism from 
(F 1 • {t})* to /11" defined by h((x, 1)) = x for each x in /~1. Let 5~'(ffD) = 
{S'(D)I D in Y~.  

LEMMA 5.2. For each AFA ~ ,  5f ' (~o)  = 5e(~). 

Proof. The writing moves for ~ o  differ from the writing moves for ~ c  only in that 
all symbols on the checking stack are written with 1 as the second component. There- 
fore 5~'(CZTD) ~ 5f(c~c). By Lemma 3.2, 5P(~c) = ~f(~),  so 5~'(~D) = .~f(~). 
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TH~.Oa~M 5.1. For each AFA 9 ,  ~(.~ca(~)) = ~e(~D)" 

Proof. By Lemmas  5.1 and 5.2, -~e(~D) = ~e(~D) and ~L~v(~) = 5f ' (~D).  Thus  
we need only establish that J a (Sv ' (~o) )  = .2V(~o). To  prove that ~a(5 : ' (~D))  C 
.~v(~D), assume that D is in ~ D  and that T is in f a .  We then construct D '  in -~D suck 
that T(S'(D)) = L(D'). D' first simulates D in writing its checking stack word, except 
that when D writes (ax, 1)"'" (ak, 1), D '  writes (r 1)(a a , 1)"" (a~, 1)($, 1). Then  
D '  moves its pointer left to (r 1) and simulates the moves of T on Ca 1 --. ak$, using 
the output of T as input. When T reads $ in an accepting state, then D'  reads ($, i) for 
some integer i, erases its checking stack word, and goes to an accepting state. Since T 
is deterministic, each symbol of r "'" ak$ will be visited fewer than # (Ks)  + 1 
times, where #(K2)  is the number  of states of T. Thus  D',  in simulating T, will visit 
each symbol on its checking stack fewer than #(K2)  + 3 times. So L(D') = T(S'(D)) 
and D'  is in ~ D .  Hence ~a(O~ _C ~ ( ~ D ) .  

T o  prove that ~ ( ~ D )  _C ~ a ( ~ ' ( ~ D ) ) ,  assume that D = (K1,271, ~, P0, F~) is in 
~ 9  and that S(D) C_ (F  1 • {1})* is the language D writes on its checking stack. We 
define T in ~ a  and a regular substitution a such that L(D) = T(a(S'(D))). Since T is 
deterministic and D is nondeterministic, each word in ~(S'(D)) must  contain a word 
of S(D) as well as information about one path which D may take through that word. 
This  is done as follows. 

For each a in /"1, let L a be the set of all words (Pl ,  i l , ] '1 ,  k l ,  q l ,  a, bl, dl) "'" 
(Pro, i ~ , j ~ ,  kin, q,~, a, b,~, din), where for each n, 1 ~ n ~< m, and for each d ,  in 
{-- ,  0, +} ,  (qs, (a, j s ,  ds), 1,) is in 8(ps, b,~, (a, jn) 1,4). Also, if d~ = + ,  then 
in+~ = in, js+~ = j ,  + 1, and ks < kn+l. I f  dn = 0, then in+l = in, jn+x = in,  
and ks+x : k s .  I f  ds = - - ,  then i,~ < is+x, j~+~ = j~ + 1, and kn+l = k , .  Then  let 
cr be the regular substitution defined for each a in F 1 by a(a) : aLa. For each 
(p, i, j,  k, q, a, b, d) in (r(a), j is used to count the number  of moves D has made away 
from the symbol a. The  integer i is used to count the number  of times D has moved 
away from the symbol left of a, and k is the number  of times D has moved away from 
the symbol right of a. I f  D is in state p, reads b as input and (a, j )  on its checking stack, 
and moves right to a '  in state q, then T reads (p, i,j, k, q, a, b, + )  in state p, writes b, 
and moves right to the leftmost symbol in a(a ')  which has k + 1 as its third component.  
(If  the first and second components are not q and j, respectively, then T blocks.) Left 
moves of D are simulated in a similar manner.  Tha t  is, if D is in state p, reads (a,j) on 
its checking stack and b as input, and moves left to a" in state q, then T reads (p, i, j ,  
k, q, a, b, --) ,  writes b, and moves left to the leftmost symbol in a(a") which has i + 1 
as its third component.  (If  q a n d j  are not the first and fourth components, respectively, 
of that symbol, then T blocks.) I f  D reads b using a 0-move, then T writes b and moves 
right one symbol from (p, i, j ,  h, q, a, b, O) to (q, i, j ,  k, a, b', d). 

In  this manner,  T can deterministically follow the same path through a word in 
a(S'(D)) that D follows through a word in S(D), and L(D) = T(a(S'(D)). 
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COROLLARY 1. I f  ~ is a full AFL,  then 3"a(s ) is a full AFL.  

Proof. Since ~ is a full AFL,  there exists an AFA .~ such that ~ = ~..ce(~). Then  
~ a ( ~ )  = ~a(~cP(~)) = -LP(~o) is a full AFL,  since ~z> is equivalent to an AFA. 

COROLLARY 2. I f  ~ and ~ '  are AFA such that ~LP(~)= .L#(~'), then 
~ e ( ~ )  = ~e(~d).  

Proof. The proof is analogous to the proof of the Corollary to Theorem 3.1. 

Remark. The proof of Theorem 4.1 can be modified to show that for each AFA .~, 
if .L~~ is closed under substitution, then so is --q~(~v)- 

I t  is known that there are one-letter languages in ~--(~9 ~ - -  ~ for some A F L  .L#. 
Greibach [11] proves tha tL  = {am I m is not prime} is in ~cA,  the family of checking 
acceptor languages. By a remark following the Corollary to Theorem 3.1, J - ( ~ )  = 
~cA �9 Since L is obviously not in ~ ,  L is in J--(~) - -  ~ .  In  contrast, the following 
theorem shows that for each full A F L  &~, all one-letter languages in ~a(~z ~ are also 
in ~ .  

THEOI~M 5.2. I l L  is a language in a full A F L  ~ ,  T is in ~a , and T(L) C_ b*, then 
T(L ) is in .L#. 

Proof. Let L be a language in a full A F L  oL,r T = (K1, Z 1 , 2 '  2 , H I ,  so, r $, F1) 
in ~ a ,  and T(L) C b*. To prove T(L) in .L~ a, we define a regular substitution cr on ZI* 
and an a-transducer M such that M(a(r = T(L). Then T(L) is in ~ ,  since a(r 
is in ~L~ and full A F L  are closed under a-transducers. 

For a in 2;1, let La ~ {(Pl, d, P2, b, P3, d') ] (p~, a, b, P3, d')  is i n / / 1 ,  Pl is in K1, 
and d '  is in {--,  0, +}}. The third and fourth components of these 6-tuples store the 
state T is in and the symbol it writes when it reads a. The fifth and sixth components 
store the next state and the direction T moves from a. The  first and second components 
store the previous state and the direction T came from in moving to a. For a in 271, 
let Ra be the set of all words w 1 -.- wn, where n / >  I, we is in La for each i, 1 ~ i ( n, 
and no state in K 1 appears more than once as a third component in wl ,..., w~. Note 
that for each a, R~ is finite, since the number of third components is at most #(K1). 
Let ~r be the regular substitution on 271" defined for each a in 2"1 by a(a) = aRa. 

We now describe the one-way a-transducer M which, in one pass, simulates the 
passes of T, and writes the same word in b* that T does. M has, in its states, three 
"registers," Kc ,  K r ,  and K 0 . While reading a(a), K~ stores the states of T which are 
involved in the right moves T makes from a, K0 stores the states involved in the 
0-moves T makes on a, and Kc is used to check that the moves made to the symbol 
a have been accounted for. Informally, M operates as follows. 

On reading (Pl ,  d, P2, b', P3, d ')  in or(a), for p~, p~, P3 states of T, b' in {b} td (~}, 
and d, d '  in {--, 0, + ) ,  M writes b', moves right one symbol and 
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(1) I f  d is + ,  then (Pl ,  l, P2) is stored in K r . I f  d is - - ,  then (Pl ,  r, P2) is deleted 
from K , .  I f  d is 0, then (Pl ,  0, P2) is deleted from K 0 . 

(2) I f  d '  is - - ,  then (P2, l, Pa) is deleted from K c .  I f  d '  is + ,  then (pe,  r, pa) 
is stored in K~.. I f  d '  is 0, then (P2,0 ,  Pa) is stored in K 0 . 

On reading a in 211, K,  and K 0 are checked to verify that they are empty. I f  not, 
then M blocks. I f  they are empty,  then all the triples in K r are moved to K~ and K r is 
emptied. Then  M moves right one square to the first symbol in a(a). The  6-tuple 
representing the final visit to $ is marked so that when M reads it in an accepting 
state of T, then M goes to an accepting state. Hence, for w in L, M verifies that a(w) 
contains information about a path of T through w, and M writes T(w).  

In  [13], Rajlich proves that the family of languages generated by the 2ft is properly 
contained in the family of languages generated by the 2nft. Using our notation, this 
means that .~(~.@) C d~(.~). We are now able to prove a more general result. 

COROLLARY. If .W is a ful l  subAFL of ~cF  , then ~-d(LP) C J- (Lf ) .  

Proof. Consider the language L = {a m'~ ] m, n > 1}. Since L is a checking acceptor 
language [11], L is in J - ( ~ ) ,  and therefore is in Y ( ~ f )  for each full A F L  2f. But L is 
not in J~(Lfcv). For suppose it is. Since L is a one-letter language in ~ ( ~ C F ) ,  L is 
in ~--CacF, by Theorem 5.2. Thus  L is in ~ ,  since each context-free language over one 
letter is regular [5]. Hence {a v [ p prime} kJ {a}, the complement of L, is also in N ). 
But this is a contradiction. Therefore L is not in fa(C~cF) and so is not in ~a(~a~ for 
each subAFL ~Lf of ~fcv.  Since L is in 5r - -  Ya(~) ,  J a (~ f )  ~ 5'-(oLf) for each 
subAFL &o of 5~ 

6. COMPOSITION OF ~ AND ~d 

In this section we study ~a.Ta(Lf), J--~176 ~ j - ( ~ o ) ,  and ~'~/--(~), for ~qo an 
AFL.  We first prove in Theorem 6.1 that for each full A F L  ~f, ~ a ~ ( 5  ~ = 5ra(5r 
and 3 - ~ ( 5 ~ )  = j ( c f ) .  The  question then arises as to whether ~162 ) = J-(oW) 
and .Y--J~(Sr Y(g f ) .  There are cases when this is true. For example, by 
the Corollary to Theorem 4.3, if ~ is the largest full subAFL of the extended context- 
sensitive languages, then J(oW) = s I t  follows that J--3-(Zf) = ~--(2f) and hence 
~J~( .Lf )  = 5r(~f).  On the other hand, there are cases when JT3-(oW) =/= 3-(9o) and 
~a3-(~Lf) =/~ .~--(~f). In Theorem 6.2 we give necessary and sufficient conditions for 
9"~--(~f) = J-(~Lf). In the Corollary to Theorem 6.2 we show that there are A F L  for 
which ~ . Y - ( 5  ~ ~a .y-(SP) and hence 3-~-'(Lf) r J-(&f). 

THEOREM 6.1. For each ful l  A F L  &o, ya .~a(~ ,  ) = ya(~o) and J--3-a(5~ ) ~ Y(~W). 
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Proof .  We first prove that for each full A F L  5(', J ~ ( . W ) =  Ya(~qr Since 
~ a ( ~ )  G J a ~ ( 5  ~ for each full A F L  ~ ,  it suffices to show that Ya~a(oW) C Fa(s ). 
L e t L  _C271" be in oW and let T 1 and T 2 be in Y a .  We use a, the substitution defined 
in Theorem 5.2, and construct T a in f a such that Ta(a(L)) • T~Tx(L) .  

We now informally describe the moves of T 3 . Let  a a "" ak,  for k > /0 ,  be a word 
in L and let Tl(a 1 "" ak) = bl "'" bt ,  for l ~ 0. Let  T~(b 1 "" b,) = c I " "  c r a  , 

for m ~ 0, and let y = r  1 "" akwkSw ~ be in a(r a "" ak$ ). By the definition 
of a, a path of T 1 through al  "" a~ is incorporated in y. The  word b I "-" b~ appears as 
the fourth component of symbols in a(y), but  not necessarily in the same order, from 
left to right. (For example, if T 1 reads a i ,  writes b j ,  and then moves left to ai_ 1 , then 
b~+ 1 will appear as the fourth component  of a symbol in a(a,_l) ,  which is to the left 
of a(a,).)  So T~ must simulate the moves of T2 as follows. Assume T~ is reading a 
symbol (P l ,  d, p2 ,  b, ,  P3, d ' )  in a(a). To simulate a left move by T 2 from b , ,  T 8 
uses the leftmost two components,  Pl  and d, to move to the symbol in a(y)  which has 
Pa as its third component.  For  all the cases which follow, T8 also writes the same symbol 
that T 2 writes while reading b i .  I f  d is - - ,  then T3 moves left to the only symbol 
in afar_a) which has Pl  as its th i rd  component.  I f  d is + ,  then T 3 moves right to the 
only symbol in a(ai+l) which has Pl as its third component.  I f  d is 0, then T~ moves 
left one square and that symbol must  have Pl as its third component.  I f  the desired 
symbol is not found, then T3 blocks. 

To simulate a right move by T 2 from bi ,  T 3 writes the same symbol T2 writes and 
in a manner  analogous to that defined above uses last the two components of 
(P l ,  d, P2, b , ,  P8, d ' )  to find b~+i �9 When  T 2 uses a 0-move and writes a symbol, 
then /13 uses a 0-move and writes the same symbol. 

One problem remains. I f  T8 is simulating a left move o f / ' 2  as defined above and 
finds the proper  third component,  then the fourth component  may be ~. In  this case 
T~ must  remember,  in its state, that it was simulating a left move. On reading E as the 
fourth component,  T 3 continues to use the first two components of symbols it reads 
until  it finds a symbol whose fourth component is not E. I f  T8 is simulating a right 
move, then it uses the last two components until it finds a symbol whose fourth 
component is not E. 

I f  T 3 reaches $ in an accepting state of T2, then it goes to an accepting state. 
Thus  T3(r  x "" akw~$w~) = T~(b~ ." b~) = T~TI(a  ~ ".. a~) and we have 
~ ( . ~ )  ~ ~(ze). 

To prove that ~ ( ~ f )  = ~-(~o), we use the same proof, noting that T~ is non- 
deterministic if T~ is. 

For  each A F A  ~ ,  we have defined the structured-storage A F A  ~ c  and ~D �9 The  
question arises as to the connection between the two AFA.  The  following corollary 
expresses one such connection. 

COROLLARY 1. F o r  each A F A  ~ ,  J-(~q~(~D)) : 5r 
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Proof. J ( ~ ( ~ D ) )  = 3-(~a(~(~))) ,  by Theorem 5.1, 

= o~-(~r by Theorem 6.1, 

---- ~ ( ~ c ) ,  by Theorem 3.1. 

We also have a corollary which is analogous to Theorem 2.1 and the Corollary to 
Theorem 2.2. 

COROLLARY 2. I f  ~L# is an AFL, then ~--a(.W) is a full  AFL closed under reversal. 

Proof. Assume ~e is an AFL. By Theorem 2.3, fa(oW) ~ ~(~( .W)) .  Therefore 
~a(~q ~) is a full AFL, since Ya(~(-Z')) is a full AFL by Corollary 1 of Theorem 5.1. 

We now show that J a ( ~  cp) is closed under reversal. There exists T in ~ such that 
for all languages L, T(L) ~ L R. Then for L in Fa(~r T(L) -~ L R is in ~ f a ( ~ a ) .  
Thus L R is in ~(~a) ,  since ~ ( ~ L , r  = ~ a ( ~ )  by Theorem 6.1, and the proof of the 
corollary is complete. 

We now consider the case where ~ is an arbitrary AFL. 

COROLLARY 3. For each AFL ~a, ~ ( . L P )  = Ja(.o9 ~ and YJ-~(S f )  -~ 3-(.W). 

Proof. ~ ( ~ )  = ~ ( ~ ( ~ ) ) ,  by Theorem 2.3, 

= Ja~a(~(L~a)), by Theorem 6.1, 

= ~ a ( ~ r  by Theorem 2.3. 

The proof that Y~a(~r = J(.~r is analogous. 
We now prove a temma which will enable us to show that there exist families oW 

for which JaJ(~L,r is not equal to J(oLf). 

LEMMA 6.1. Let ~ be a full  AFL, L C_ X2* a language in ~L#, c a symbol not in Zz , 
and L, = {(wc) k [ w in L} for each k > 1. Then the following statements are equivalent. 

(a) L is in 3--a(~), 
(b) L k is in Z/--(~LP) for each k ~ 1, 

(c) L k is in j--(o~q?) for some k > 1, and 

(d) L k is in J-d(~LP) for some k ~> 1. 

Proof. Obviously (b) implies (c). It thus suffices to prove that (a) implies (b), 
(c) implies (d), and (d) implies (a). To prove that (a) implies (b), assume that L is in 
~ ( ~ ) .  Then L -~ Ta(L' ) for some L' in s and Ta in ~a .  Then for each k, there 
exists T~ in Y such that T~ simulates T a exactly k times. Then Tk(L' ) = L~ and 
so Lk is in f (~r  

To prove that (c) implies (d), assume that L k ~ T(L") is in J-(s162 for some k > 1. 
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Since 3--(~) ~ ~,~(Sq(.@)) ~ .ogV(~c) for some AFA ~ ,  L~ = L(D) for some D = 
(/s X 1 , 8, P0, F)  in -~c .  By the construction in Lemma 3.2, we may assume that only 
words in L" are written on the checking stack of D. We may also assume that, in 
accepting a word, D writes at least one symbol on its checking stack. (If  it does not, 
then there exists D '  in ~ c  such that L(D) ~ L(D')  and D '  writes at least one word on 
its checking stack.) We first show that 

(*) 

for each word w in L, there is a word y in L" such that if (wc) k is accepted 
by D with y on its checking stack, then there is an accepting computation 
in which D visits each symbol of y at most #(K1) times. 

Suppose ( . )  is false. Then there is a word w inL such that for all wordsy  ~- Yl ""ym 
in L", whenever (wc) k is accepted by D with y on its checking stack, then for some j, 
I ~ j ~ m, yj is visited more than #(Ka)  times. Then there exists q in K 1 such that 
the shortest path in accepting (wc) ~ is (Po , (wc) k, (~, ~)) ~-  (P, (wc) ~, (3'1 "'" Y,,q, ~)) ~-  
(q, w'c(wc)% (Yl "'" YJ 1 "'" Ym,  ,)) ~ (q, w"c(wc) n', Yl  "'" Y~ q "'" Y ~ ,  ")) ~-  
(q~, e, (,, ,)) for qF inF, 1 ~ j  ~ m, 0 ~ n' ~ n ~ k, and w' and w" terminal subwords 
of w. Clearly, w' must equal w". (For if w' :~ w", then D also accepts words of the form 
(wc)k-~'-l~:'w"(wc) ~', where w = vS'w', a contradiction.) Also, n must equal n'. (For 
if n v L n', then D also accepts words of the form (wc) k-('~-n'), a contradiction.) Then  
there is a shorter path for accepting (wc) ~, namely, (P0, (wc) k, ( ' ,  ")) ~-  (P, (wc) k, 
( y i  " y,~ q, , ) )  ~ -  (q, w ' c ( ~ e ) ' ,  ( y i  ' y ~ ' l  ' y ~ ,  ")) = (q, w" c(wc)" ' ,  (y~ .-. 
3~ ~ "'" Y,~, ~)) ~- (qe,  ~, (E, e)). This is a contradiction. Thus  ( , )  is true. 

Now we show thatL k is in ~ ( ~ v ) .  We construct D '  in ~ o  so that (y~, 1) "-' (y , , ,  1) 
is written on the checking stack of D '  whenever Yl "" Ym is written on the checking 
stack of D. Also, we construct D '  so that the second component of a checking stack 
symbol never exceeds #(K1) and D '  simulates the moves of D. By (*), L(D')  = L~ ,  
so that Lk is in ~a(-6,(') = 5e(~o).  So (c) implies (d). 

Finally, we prove that (d) implies (a). Given Lk in ~a(L~v), we construct an a- 
transducer which copies the first subword w, and erases c(wc)~:-L Therefore L is 
in ~a(s162 since .~a(.oq f )  is a full A F L  and is thus closed under a-transducers. 

Using the previous lemma, we give necessary and sufficient conditions for 
~ 7 - ( ~ )  = &~(~Lp) and ~--J~(=~#') = J - ( ~ ) .  

THEOREM 6.2. For each A F L  Lt', the following statements are equivalent. 

(a) 3-(~e) = ~ ( ~ e ) ,  

(b) f 3 " ( ~ )  ~-~ f ( ~ ) ,  and 

(c) ~ J - ( ~ )  = j-(~e).  
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Proof. Since J - ( ~ s  J-(~(ofe)) and ~ a ( ~  o) ----o~a(o~(~q~)) by Theorem 2.3, 
we may assume that ca is a full AFL.  We first prove that (a) implies (b). I f  3--(~q~ a) ---- 
~a(~a), then J-~--(~6~ o) ~ . f~a(~a) .  Therefore ~--3-(~5~ ~ = ~,~(~a), since J ' J a ( ~  o) = 
3-(~a), by Theorem 6.1. 

We now prove that (b) implies (c). I f  J-~'-(Ss = ~--(~o), then ~ a J - ( ~  ~ ---- ~-(~o), 
since ~--(c~) _C ~a:r C ~-o~(&a). 

Finally, we prove that (c) implies (a). We assume that ~-(~f) va 5re(L, a) and prove 
that ~aJ-(~,qz o) v a ~-(&o). Since d~(~,e) v6 ~a(~,e), there exists a language L in d~(~)  - -  
~a(~s Let L C Zz* and c be a symbol not in 2:2. Then  Le = {(we) z I w in L} is not 
in 2g'(L~~ by Lemma 6.1. ButL~ is in ~a~--(~q~), since L is in ~--(~o) and there exists T in 
~ a  such that T(w) = (we) ~ for all w in 2:2*. Hence L~ is in ~a~--(~)  --  ~ ( ~ ) ,  so 
that ~a~--(~q~ ~ @ J - ( ~ ) .  

We are now able to give some examples of A F L  for which o~a~'(~6~a ) 4: j-(~o). 

COROLLARY. If ~ is a subAFL of  ~ C F ,  then ~J~(.LP) ~ J'(.LP) and 

Proof. By the Corollary to Theorem 2.1 and Corollary 2 of Theorem 6.1, it 
suffices to prove the corollary for ~ a full subAFL of ~ace. Since f a  C 9-,  if ~a is a 
full subAFL of s then ~a(~CP) ~ J - ( ~ ) .  Then, by Theorem 6.2, we have 
~a3-(~q ~) :a j~(~CP). Finally, we have j--J-(.La) va ~--(~), since J-(~C~) _C ~a~--(~a) _C 
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