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For each (abstract family of languages) AFL .Z, two families of languages, the
family 7 (%) of nondeterministic and the family J,(.#) of deterministic two-way
a-transducer mappings of languages in % are defined. For each (abstract family of
acceptors) AFA 2, two associated AFA, D¢ and Zp, are defined. It is proved that
L(De) = T(L(DY), L(@Dp) = T L (D)), and T (L(Dp)) = L(D¢). If £ is an AFL,
then J (&) and Z,(¥) are full AFL and are closed under reversal. If % 1s a full
principal AFL, then so is J(¥). If a full AFL Z is closed under substitution, then
so are (&) and FHL). If &£ is a full AFL, then each one-letter language m (%)
1s also in 2. For each AFL ., 7,7 (¥) = T ¥) and T TYEL) = F (). In contrast,
if Z is a subAFL of the family of context-free languages, then 7,7 (%) % J (%) and
hence 7 I(&¥) + T (&).

1. INTRODUCTION

Of the various finite-state transducers in the literature, the one which has recently
been receiving the most attention is the one-way a-transducer. One reason for this
is its prominent role in (abstract family of languages) AFL theory. For example, it
was shown in [6] that full AFL are closed under one-way a-transducers. In view of
the importance of one-way a-transducers for families of languages, the question
arises as to the significance of two-way a-transducers for families of languages. The
purpose of this paper is to investigate, in a general setting, the two-way g-transducer
and its connection with families of languages, especially AFL.

Historically, a number of two-way finite-state devices have been studied in connec-
tion with families of languages. T'wo-way generalized sequential machines (2 gsm)
were introduced by Aho and Ullman in [1] and used to characterize abstract families
of two-way deterministic languages. Two-way sequential transducers (2 st) were
defined by Ehrich and Yau in [2] and some properties of two-way mappings of regular
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and context-free languages were examined. In Theorem 4.8 of [2], the 2 st mapping
of a regular set was shown to be equivalent to a special stack language related to the
checking acceptor language [11]. Both nondeterministic and deterministic two-way
finite-state transducers (2 nft and 2 ft) were defined by Rajlich in [13], and the equiv-
alence of the family of languages generated by the 2 nft and the family of checking
acceptor languages was shown.

In the initial phase of the present research, it was observed that the above mentioned
results of Ehrich and Yau, and Rajlich could be combined to show the equivalence
of the two-way a-transducer mappings of the regular sets to the family of the checking
acceptor languages. It then seemed feasible to attempt to extend this result by charac-
terizing, in a similar manner, the families of two-way a-transducer mappings of full
AFL. This was accomplished by finding (abstract family of acceptors) AFA
characterizations for both the families of nondeterministic and deterministic two-way
a-transducer mappings of full AFL. (These AFA are generalizations of the family
of checking acceptors, and differ only in that words from languages other than
regular sets can be written on their checking stacks.) It was then discovered that these
characterizations were most appropriate for studying many properties of the families
of the nondeterministic and deterministic two-way a-transducer mappings of AFL.

This paper is divided into five sections in addition to the present introductory
section. In Section 2, .7 and .7, certain families of nondeterministic and deterministic
two-way a-transducers, respectively, are defined. It is shown that (%) is closed
under reversal and under one-way a-transducers for each family &. If £ is closed
under marked * and either marked U or marked -, then (%) is a full AFL.

In Section 3, a structured-storage AFA 9, called the “AFA of auxiliary 2-storage
checking acceptors,” is associated with each AFA . It is shown that #(Z.) =
T(L(2)), where T (L(2)) is the family of nondeterministic two-way a-transducer
mappings of languages in £(Z).

In Section 4, some properties which are preserved by .7 are studied. If .Z is a full
AFL closed under substitution or properly contained in the family of context-sensitive
languages, then so is 7~ (&). If & is a full principal AFL, then so is 7 (), and a full
generator for 7 () can be constructed from a full generator for .#.

In Section 5, a structured-storage AFA &, , called the ““AFA of auxiliary &-storage
counting checking acceptors,” is associated with each AFA 2. It is shown that
L(Dp) = THL (D)), the family of deterministic two-way a-transducer mappings
of #(2). It is also noted that closure under substitution is preserved by J;.
Finally, it is proved that each one-letter language in J,(&), for £ a full AFL, is
also in 2.

In Section 6, the composition of 7 and 7, is studied. It is first shown that for
each AFL %, F,9(%) = TH(L) and T THF) = F(&). As a corollary, it follows
that 7 (L (2p)) = L(D.) for each AFA &. Another consequence is that T4(Z) is a
full AFL closed under reversal for each AFL .#. Necessary and sufficient conditions
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for 7,9 (¥) = I (&) and TT(F) = J(£) are then given. These conditions are
used to show that if % is a subAFL of the family of context-free languages, then
T4 T (&) #% T (Z) and hence 7T (¥) # T (&)

2. Two-Way A-TRANSDUCERS

As mentioned in the previous section, the purpose of this paper is to study the
connection between two-way a-transducers and families of languages, especially AFL.
We assume that the reader is familiar with the concepts of AFL theory, especially
as presented in {3, 6, 7, 8, 10, and 12]. In this section we define two-way a-transducers
and prove some elementary results concerning two-way a-transducers and families
of languages.

We begin with the definition of two-way a-transducers.

DEFINITION. A ‘“‘two-way a-transducer” is an 8-tuple T = (K, X, , %, , H, 55, ¢, §,F)
where

(1) K, 2, and X, are finite sets of ‘“‘states,” ‘‘input symbols,” and “output

symbols,” respectively;

(2) H is a finite subset of K X 2 X Zy* X K X {—, 0, +};

(3) s, , the “‘start state,” is in K

(4) ¢ and § are special symbols in 2 (“left” and “‘right endmarkers,” respec-
tively); and

(5) F, the set of ““final states,” is a subset of K.

Remark. 'The terms “‘two-way a-transducer’” and ‘‘nondeterministic two-wa
y

a-transducer” will be used synonomously.
We now define the moves of the two-way a-transducer.

DEerFINITION. Let +— be a relation on K X (2, U {1})* X Zy* defined as follows
(for b, , byin Z,*, | anew symbol, and &, Tin X\ * 2, , x5, 23 Iin 2, , vy in (2] — {¢, $H)*
such that xx;%,X¥ = xx;,% = ¢y§).

(1) (p, xxyx2 | &, by) (g, a0y | 2%, byby) if (p, %5, b, g, —) is in H;
2) (P, %y | x9%, b)) — (g, %1% | &, byby) if (p, %y, by, g, +) is in H; and
(3) (p, xx5 | &, b)) — (g, xx3 | &, byby) if (p, %3, by, ¢, 0) is in H.

Let = be the reflexive, transitive closure of —.

Notation. For each two-way a-transducer T = (K, 2, Z;, H, 5y, ¢, §, F) and
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each w in (X, — {¢, $))*, let T(w) = {z in Z,* |(sy, ¢ ] w8, €) 2= (p, ¢w$ 1, 2) for
some p in F}. For every L C () — {¢, $1)*, let T(L) = Upinr T(w).
We now define a subset of the set of all two-way a-transducers,

Notation. Let J be the family of all two-way a-transducers such that H is a finite
subset of K x 2 X (£, U {e}) x K X {—,0, +}. For 2, a family of languages, let
T(&) ={T(L)| Tin 7 ,Lin Z}. Clearly, 7(¥) = {T(L)| T a two-way a-transducer,
Lin Z}.

Note that the two-way a-transducer defined here is a nondeterministic variation
of the 2 gsm defined by Aho and Ullman in [1].

The two-way a-transducer differs from the two-way sequential transducer (2 st)
of Ehrich and Yau [2] in that the 2 st has no endmarkers and no accepting states.
The 2 st accepts by moving its pointer to the blank at the right of the input word.
Ehrich and Yau discuss H(#) and F(Zcr), the 2 st mappings of %, the family of
regular sets, and of Z¢p, the family of context-free languages, respectively. They
prove that #(#) and S(ZFcg) are full AFL closed under reversal and substitution.
It can be shown that (%) = T(#) and S5 Lcr) = T (Zcp), the proof depending
on the fact that L is in # (or Zg) if and only if ¢L$ is in # (or L)

Finally, the two-way a-transducer may be compared with the two-way nondeter-
ministic finite-state transducer (2 nft) introduced by Rajlich [13]. Each 2 nft uses a
regular set X, * as input and generates a language in the family #\py. It can be
proved that Fypr = J(Z), the proof depending on the fact that the finite-state
control of the 2 nft is used to check whether or not an input word in 2, * is in some
particular regular set R.

DErFINITION. A ‘““‘deterministic two-way a-transducer” T' = (K, X, %y, H, 50, ¢, $, F)
is a two-way g-transducer such that

(1) for each pin Kj and a in 2 , there is at most one 5-tuple (p, 4, b, ¢, d) in H,
and
(2) for pin F there is no 5-tuple in H of the form (p, 8§, b, g, d).

Remark. The deterministic two-way a-transducer defined here is equivalent to
the 2 gsm of [1].

Notation. Let J,; be the family of all deterministic two-way a-transducers
(Ky, 2,2, H, 5, ¢ 8, F) for which bis in X, U {e} if (p, 4, , ¢, d) is in H. For each
family & of languages, let J4(¥) ={T(L)| T is in J;, L is in #}. It is clear that
TP = {T(L)| T is a deterministic two-way a-transducer, L is in #}.

Remark. Foreach T =(K,,2,,2,,H, s5,,¢ 8§, F)in J;, each symbol of the
input word is read fewer than # (X;) 4- 1 times in any accepting computation.!

1 For each set K, #(K) denotes the number of elements in:K.
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We now present some elementary results concerning .7 (%), for families of
languages &.

THeOREM 2.1. For each family of languages &, T (X)) is closed under reversal and
under one-way a-transducers.?

Proof. IfLisin % and Tisin .7, there exists 7' in .7 such that 7"(L) = [T(L)]*.
T’ operates as follows. For a word w in L, T” moves to the right end of ¢w$, goes to a
final state of 7, and then simulates, in reverse, the moves of 7. (For example, if T
reads ¢ in state p, writes b, and moves right to a’ in state ¢, then 7" reads «’ in state
(g, @'), writes b, and moves left in state (p, a). T’ continues only if it now reads a.)
If 7" reaches ¢ in the start state of T, then 7" moves to the right end of ¢w$ in an
accepting state. Thus 7 (%) is closed under reversal.

For L in % and a one-way a-transducer M, there exists T in .7 such that T(L) =
M(T(L)). (T is constructed so that it uses pairs of states of M and 7 to simulate
each in turn.) Thus J(.¥) is closed under one-way a-transducers.

TueorReM 2.2. If F is a family of languages closed under marked  and either marked
U or marked -, then () is a full AFL3

Proof. If % is closed under marked x, then for L in &, (cL)* is in &. For T'in 7,
there exists 77 in .7 such that T"((cL)*) = [T(L)]*. Hence J (%) is closed under x if
& is closed under marked *.

If & is closed under marked U, then J (%) is closed under U, since for L, , L,
in % and T, T,yin 7 ,there exists T3 in J such that Ty(c, L, U ¢,L,) = Ty(Ly) U Ty(Ly)-

If & is closed under marked -, then .7 (¥) is closed under -, since for L, , L, in &
and Ty, T, in .7, there exists T in J~ such that Ty(L,cLy) = Ty(L,) + To(Ly).

Thus, if & is closed under marked * and marked U, then J(.%) is a full AFL by
Theorem 2 of [12], since it is closed under one-way a-transducers, *, and U. If
Z is closed under marked * and marked -, then J (%) is a full AFL by Theorem 1 of
[12], since it is closed under one-way a-transducers, *, and -.

COROLLARY. If % is an AFL, then T (£) is a full AFL.

Remark. 1t is shown in Corollary 2 of Theorem 6.1 that J (%) is a full AFL
closed under reversal if L is an AFL.
We close this section with a result which be useful later.

TuporeM 2.3. For each AFL &, 7(L) = T(F(L)) and T L) = TF (L))t

2 The reversal of the work w = %, *** %, , 7 > 0, each x, in Z, is the word w® = x, -~ & .
The reversal of the language L is the language LR = {w® | win L}.

3 The author is grateful to the referee for suggesting this form of the theorem.

4 For each set of languages &, f}(f) is the smallest full AFL containing .Z.



TWO-WAY A-TRANSDUCERS AND AFL 93

Proof. We first prove that 7 (%) = F(#(£)),5 For an arbitrary homomorphism
h, Tyin 7, and L in %, there exists T, in 7 and an e-free homomorphism %, such
that To(hy(L)) = Ty(M(L)). (If hy(a) # €, let hy(a) = hy(a) and if Ay(a) =, let
hy(a) = e. T, writes no output while reading e, but otherwise simulates 7, , remem-
bering in its state the direction 7} is moving.) Thus 7 (%) = J (#(Z)), since &
is closed under e-free homomorphism. Hence I (F) = F(F(Z)), since if £ is an
AFL, then (%) = #(Z) by Lemma 2.2 of [9]. The proof that 7,(F) = T(F(Z))

is similar.

3. AUXILIARY Z-STORAGE CHECKING ACCEPTORS

In this section we associate with each AFA £ a structured-storage AFA 9,
called the “AFA of auxiliary Z-storage checking acceptors.” We then show in Theorem
3.1 that £(Z(). the family of languages accepted by Z., is 7 (Z(2P)), the family
of two-way a-transducer mappings of languages in #(2). This result will play a key
role in the study of the nondeterministic two-way a-transducer mappings of AFL.

Given an AFA 2, we now informally define .. Acceptors in 2 have two types
of storage, one a stack and the other an auxiliary storage of the same type as &. Each
acceptor in & operates in two modes, a writing mode and a checking mode. The
auxiliary storage is used only while the acceptor is in the writing mode and it is used
in such a way that the words written on the stack form a language in #(Z). Once the
word is written on the stack the acceptor operates in the checking mode. In this mode,
the acceptor may enter the stack but no further writing is allowed until the storage is
erased (in one step). The formal definition follows.

DeriNITION. For each AFA (2, 2), where 2 = (K, 2, I'y , I, , f3 , go), let I} = 2,
and I, = M Iy 1u{—, +,0, E} with 1, —, 4+, 0 and E new symbols. Let f be
the function from (I7* X I*) X (I; X I,) into (I}* X [2*) U {@} and g be the
function from I* X I',* into the finite subsets of I'N* X I,* defined as follows
(for x, ¥ in I'\*, x;, ay in I' , y, in Ip¥*, and u, in I,).

(1) The “writing” mode:
a. f((x, ya), (%1, up)) = (%21, fi(vz, w2)).8

b. f((x, y2), (0, u)) = (x, folve , 4s))-
e f((x, v2), (w1 1, tg)) = (xx1 1, folyz » o)), Where fo(yy, 1) = €.

5 #(F) = {h(L) | L in &£ and % an arbitrary homomorphism}.
S If fa(ye, u2) = {@}, then f((x, y2), (41, %)) = {0} for each 1, in I .
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(2) The “checking” mode:

a. f((oxmy ] % €, (=0 1) = (s3] 5 ).
b. f((xx; | 2%, €), (4, 1)) = (xx,%, ] 7, €).
¢. fl(x1]%6),(0,1)) =(x1% e).
d. f((x21 1, €), (E, 1)) = (&, €).

@) 2 (e ) = e P
b. g((xxy, v2)) = {(x1, )| ¥ in ga(y2)}-
c. g(xx ] & €)) = {(x= 1, €}

Then (¢, D), where 2 = (K, X, I} X I, I; X 1, f, g), is called the AFA of
“auxiliary @-storage checking acceptors.” (We use P when £ is understood.)

Note that what we have called the AFA of auxiliary Z-storage checking acceptors
is technically not an AFA. However, we shall soon observe that it is closely related
to an AFA.

We now define the moves of acceptors in (2, D).

DeriniTiON. Let D = (K, 2y, 8, ¢,,F) be in @.. 4 “‘configuration” C is a
triple C = (g, w, (yy, o)) Where g is in K, , wis in Z}*, y, is in I} *, and y, is in ¥

Notation. Let+— be a relation on configurations defined as follows (for a in X, U {¢}
and w in 2;%): (g, aw, (y1, v2)) — (¢, @, (1, 72')) if there exist (71, ¥p) in g(yy , ¥2)

such that (¢, (%, %)) is in (g, &, (1, 72) and f(('yl y V) (4, 4)) = ('Yl,’ 72,)'
Let ¥ be the transitive, reflexive closure of —.

An auxiliary @-storage checking acceptor defines a language as follows.

Notation. ForeachD = (K, 2\, 8, q,,F)in 2D, let L(D) = {w |(gy , @, (e, €)) -
(¢, (e, €)) for some g in F} and let (D) = {L(D)| D in Z}.

It is easily seen that the AFA of auxiliary &-storage checking acceptors is a special
instance of a structured-storage AFA as defined in [3]. Hence, by Theorem 1 of [3],
it follows that £(2¢) is a full AFL.

We now consider 9, a special family of auxiliary Z-storage checking acceptors
which

(1) do no reading of input while in the writing mode, and

(2) use the £ instruction only once in accepting a word.

DerFINITION.  Let D be the family of all D = (K, , I, 8, p, , F) in D such that §
has the following properties.

(1) If&(p, a,(y, 2)) is defined for p in K, , ¥ in I} U {¢} and z in gy(I,*), then

a=cg
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(2) If(q, (E, 1)) is in &(p, @, (¥ 1, €)), then &g, a’, (e, €)) is undefined for all a’
in X ¥,
Notation. For each AFA 9, let (Zc) = {L(D)| D in Z}.
For technical reasons, we next show that the family of languages accepted by 2.
is equivalent to the family accepted by 2 .

Lemma 3.1. For each AFA 9, L (D) = L (D).

Proof. Since D C D, we have L(Z¢) C L(Dc). To show that X(Z) C L(Zc),
we prove that for each D in 9 there exists D’ in Z¢ such that L(D) == L(D"). Let
D = (K;, 2,8, py,F)bein D and assume that the moves defined by § are numbered
in some way.

Case 1. Assume that D satisfies property (2) of the definition of .. Let D’
be constructed so that it nondeterministically writes a word, operating as follows.

A. The writing mode: In this mode, D’ uses its auxiliary storage in exactly the
same way D does, but D’ reads no input.

(1) If D writes the symbol » on its checking stack using the 7th move of 3,
and the move is not a 0-move, then D’ writes the symbol (y, {) without
reading any input.

(2) If D uses a 0-move, the jth move of 8, then D’ writes the symbol (3, j) on
its checking stack without reading any input.

(3) D’ marks its final checking stack symbol in some way.

B. 'The checking mode:

(1) Without using its auxiliary storage, D' first verifies that the word on its
checking stack is a word which D can write on its checking stack. D’ also
reads the part of the input word which D reads while it is in the writing mode.
D’ moves as follows.

a. D' moves to the left end of its checking stack word.

b. If D’ reads the checking stack symbol (¥, Z) or (¥, 1), it reads the input
symbol which D reads using the ¢th rule. D’ also moves right one symbol
on the checking stack.

(2) D', having verified that the checking stack word is correct, now reads the
remainder of the input word, simulating the checking moves of D. For these
moves, all the second components of the checking stack symbols as well as
all the barred symbols are ignored by D’'.

It is clear that L(D") == L(D) and that D’ reads no input while it is in the writing
mode.

571/10[1-7
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Case 2. Assume that D does not satisfy property (2) of the definition of J. .
Then D writes the words @, ,..., w,, # > 1, on its checking stack, using and erasing
each word in turn. There exists D in & which writes xqw;%, - 2, on its checking
stack, using only e-moves. (Assume that x, is a new symbol.)

Each w,” is of the same form as the words in Case 1, that is, for each 7, z,” contains
each symbol of w, as well as the number of the rule which D used to write that symbol.
When D erases w, and writes 2, , then D simulates D by moving right over x, and
verifying that w,,, is written on its checking stack. As in Case I, D, reading )}, ,
then simulates all the checking moves of D on =,,; . When D erases its final stack
word w,, and goes to an accepting state, then D simulates D by erasing its stack word
and going to an accepting state. No further moves are defined for D. Clearly, L(D) =
L(D) and the proof of the lemma is complete.

We now establish that the languages which are written on the stacks of acceptors
in 9. are related to languages in £(2).

Notation. ForD = (K;, 2,8, g5, F)inD¢,let S(D) = {yin I * (g, <, (¢, €)) -
(b (v 1, N} and let F(D) — {S(D)| D in T

LevmMa 3.2, For each AFA 9, (D) = L(D).

Proof. To show F(Zc) C #(D), let D be in F. and construct D’ in & such that
L(D")y = S(D). D’ operates as follows. Since the storage of D’ is the same as the
auxiliary storage of D, the reading moves of D' are defined so that D’ reads exactly
what D writes on its checking stack. Since D can read the last checking stack symbol
it has written, [’ must remember in its state the last symbol it has read. If D writes
its final checking stack symbol, then D’ goes to an accepting state.

To show that #(2) C #(Z ), assume that D is in 2. Construct D in F such that
if D reads an input symbol, then D writes that symbol on its checking stack, using its
auxiliary storage in exactly the same way that D uses its storage. If D reads an input
symbol vy and goes to an accepting state, then D writes v | on its checking stack.
Then S(D) = L(D) and the proof is complete.

We are now able to establish a characterization result for the family of two-way
a-transducer mappings of a full AFL.

TueorEM 3.1, For eack AFA @, L(Dc) = T{(L(D)).

Proof. Since L(D.) = L (D) and L(2) = Y(gc) we need only prove that
.2’(90) = T (F(ZD)). To prove that L(Z ) C T (L (D), let L = L(D) where D is
in & . First we construct D in J which simulates all the moves of D except that
when D writes its final stack symbol » and goes to state p, then D writes (p, y) as its
final stack symbol. Next T in & is constructed such that for each input word in
S(D), T moves its pointer right to the symbol (p, ¥), goes to state p, and simulates the
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checking moves of D, writing the word which D reads. When D erases its checking
stack word and goes to an accepting state, 7" moves right to $ and goes to an accepting
state. Then T(S(D)) = L(D) = L(D) and L (D) C T (F(Dc))-

To prove that I (F(Dc)) C L(Dc), let D be in Z and T be in 7. Construct
D’ in 9. such that if D writes a word @ on its checking stack, then D’ writes ¢u8$.
If D accepts € without writing on its checking stack, then IV writes ¢§. After writing $,
D’ moves its pointer left to ¢ and then simulates the moves of T, reading the word
which 7" writes. When T reaches § in an accepting state, D’ erases ¢w$ and goes to an
accepting state. Then L(D") = T(S(D)) and the proof is complete.

The construction in Theorem 3.1 appears to make 7 (%) dependent on the choice
of AFA for #. This is not the case, however, as the next result shows.

COROLLARY. Let 2 and &' be AF A such that (D) = L(Z"). Then £ (D) = L(D.)

Proof. P (%) = T (ZL(2)), by Theorem 3.1,
= T (L(2")), since (D) = L(Z"),
= ZL(2.), by Theorem 3.1.

Remark. Suppose & is the AFA which does not depend on its storage. Since
D does not depend on its auxiliary storage, L(D ) = L, , where ¢, is the family
of checking acceptor languages [11]. By Theorem 3.1, L(Z¢) = T (£(Z)) and
T (L(D) = T(X) since L(D) = R. So %, = F (%), which is equivalent to the
statement proved by Rajlich [13] that %, = Lnpr -

4. PRESERVATION OF PROPERTIES BY 7

In this section we study some properties which are preserved by 4. We prove in
Theorem 4.1 that if . is a full AFL closed under substitution, then so is 7 (%#).
We show in Theorem 4.2 that if £ is a full principal AFL, then so is 7 (%). Finally,
we show in Theorem 4.3 that if .% is a full AFL properly contained in the family of
extended context-sensitive languages, then so is 7 (%). A corollary gives an example
of an AFL #, properly contained in the extended context-sensitive languages, such
that 7 (&) = %. We now turn to our first result.

THEOREM 4.1. For each AFA 2, L(D.) is closed under substitution if £(Z) 4s.

Proof. The proof is a variation of the proof in [11] that %, is closed under
substitution. Assume that D is in & , L(D) C 2} *, S(D) C I'y*, and 7 is a substitution
on Z;* defined for each a in X, by w(a) = aL(D,), where D, is in J. . (It suffices to
consider substitutions of this type since F(Z.) is a full AFL.) Then Ilet
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L = Uainz, aS(D,) and let o be the substitution on I'* defined for each b in I} by
o(b) = bL*. ('This places strings of checking stack words for the D, between symbols
of I} .) Since #(2) is closed under substitution and the S(D,) are in £(9D), o(S(D))
is in #(2). Then D’ in D is constructed such that it writes words in o(S(D)) on its
checking stack. Then D’ simulates D while reading symbols of 2, and, without losing
its place on the simulated checking stack of D, simulates D, while reading words of
L(D,). Hence L(D") = +(L(D)) and L(Z) is closed under substitution.

CoRrOLLARY, If % is a substitution closed full AFL, then so is 7 (£).

Proof. If ¥ is a full AFL, then & = #(2) for some AFA 2. Then 7 (%) =
J(ZL(2)) and by Theorem 3.1, T(H(2)} = L(D). Since & = L(P) is a substi-
tution closed full AFL, so is £(D,), by Theorem 4.1. Hence (&) = L(D¢) is a
substitution closed full AFL.

One question often raised about a full AFL is whether or not it is full principal.
We now show that 7 preserves full principal AFL.

DrriniTioN. An AFL & is “full principal™ if there exists a language L, calied a
“full generator,” such that & = F(L).”

THEOREM 4.2. Let 2 be an AFA such that £(D) is a full principal AFL over a
countable alphabet. Then F(D ) is full principal.

Proof. Let ($2, &) be the AFA, where @ = (K, 2, Iy, I,, f, , g5)- By Lemma 2.1
of [8] and the Corollary to Theorem 3.1, we may assume that 9 is finitely encoded.
Thus I, and g,(I,*) are both finite. Since X' is countable, 2 = {q, ,..., a; ,...}. For each
nz=1,letd, ={a,.., a,}. Let (2., Z) be the AFA of auxiliary Z-storage checking
acceptors where 2. = (K, 2, I', x Iy, I; X I, , f, g). Let (§', 2’) be the structured-
storage AFA such that ' = (K, 2, 4, x Iy, I}’ x I, f', g') where I, = 4, U
4,10 {—,0, +, E} and f’ and g’ are defined just as f and g, respectively. (This
structured-storage AFA is equivalent to an AFA by Theorem 1 of [3].) For each
D = (K, 2,8, py,F)in @, the checking stack alphabet is in 4,, for some n > 1,
since it is finite. So for each D in P there exists D' = (K, 2}, &, py, F') in 2’ such
that the checking stack alphabet is in 4, and L(D’) = L(D). ('This is done by allowing
D’ to use a,’a, whenever D uses a; on its checking stack.) Thus #(2.) C £(2').
Since 2' C D, (D) C L(2) and therefore L (D) = L(Z'). Since I," x I, and
g4y* X I'y*) ={e, a1, a3, @, 1, a3 |} X g,({5*) are both finite, the AFA equivalent
to &, as constructed in Theorem 1 of [3], is finitely encoded. Thus #(Z,) is full
principal, since Z(Z) = Z(Z’) and the AFA equivalent to 2’ is finitely encoded.

If an AFA 2 satisfies certain conditions, then Ly , the set of those words over the

* We write % (L) rather than the more formal # L.
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instruction alphabet of 2 which transform the empty storage back to the empty
storage, is a full generator of £(2). By a construction similar to those in [7], an
AFA 9. can be constructed such that £(2.) = L(Z) and I_lg'cis a full generator
for £(2.) = T (L (Z)). We omit the details.

When a new family of languages is introduced, the question arises as to its relation
to well-known families. The following theorem relates to that question. It shows
that the family of two-way a-transducer mappings of a full AFL contained in the
family of extended context-sensitive languages is itself contained in the family of
extended context-sensitive languages.

Notation. Let Zrg be the family of context-sensitive languages and let Fcg be
the family of extended context-sensitive languages, i.e., Fpcs = {L, L U {e}| L in Fcs}

TueoreMm 4.3. If £ is a full AFL such that & C Scs, then T(L) G Fucs -

Proof. By the Corollary to Theorem 2.2, 7 (%) is a full AFL if & is. Since Fgcs
is not a full AFL, it suffices to prove that 7 (%) C Fcs -

The proof that 7 (F) C Fpes is a variation of the proof by Ehrich and Yau 2]
that a two-way sequential transducer mapping of a context-free language is an ex-
tended context-sensitive language. First, given 7T in .4 and a language L in &, an
a-transducer M (corresponding to the Ist of [2]} and 77 in J (corresponding to
the 2st of [2]) are constructed such that T7(M(L)) = T(L) and for each w in T(L)
there exists ¥’ in M(L) such that = isin 77(y') and |3’ | < | w |. Then an /ba is con-
structed which simulates M and T’ and which accepts TV(M(L)) = T(L). ThusT'(L)
is in Fcs , so that T(F) ¢ Fpcs -

In [5] it is shown that each AFL containing {e} has a largest full subAFL. The
largest full subAFL of Zycg has an interesting property.

CoRroLLARY. If % is the largest full subAFL of Lgcs , then T(F) = 2.

Proof. By Theorem 4.3, (%) ¢ Fucs and by the Corollary to Theorem 2.2,
F (&) is a full AFL. Since % is the largest full subAFL of %pes, 7 (L) C L. Then
T (&) = & since L C T ().

In conclusion, we note that if £ is closed under complementation or intersection,
then Z(¥) need not be. In [11] Greibach shows that the family of checking acceptor
languages, which we have shown to be equivalent to F(£), is not closed under
complementation or intersection, even though % is.

5. DETERMINISTIC Two-WaYy A-TRANSDUCERS

In this section we duplicate, for deterministic two-way a-transducers, some of
the results proved in Sections 3 and 4 for the nondeterministic two-way a-transducers.
We first associate with each AFA @ a structured-storage AFA 9, , called the “AFA
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of auxiliary Z-storage counting checking acceptors.” By analogy with Theorem 3.1,
we show in Theorem 5.1 that the family #(2p) of languages accepted by 2, is
equivalent to the family J(F(Z)) of deterministic two-way a-transducer mappings
of languages in £(2). We indicate in a remark that substitution is preserved by 5.
One area in which J and ; differ is in their effect on one-letter languages. It is
known that there are one-letter languages in J (%) — %, where # is the family of
regular sets. But, in Theorem 5.2, we show that one-letter languages in J,(¥) are
in & for each full AFL 2.

Given an AFA %, we now informally define the new family &, of acceptors.
2 p will be similar to the AFA @ in that there are two types of storage, a stack and an
auxiliary storage of the same type as &. The auxiliary storage will be used only while
an acceptor in Zp is in the writing mode. While in the writing mode, the acceptor
writes symbols in I'; X {1} on its stack. Once a word is written on its stack, the acceptor
operates in a checking mode. In this mode, each time the pointer moves left or right
from a symbol on the stack, the integer appearing as the second component of the
stack symbol is increased by one. Thus we have a count of the number of times a
stack symbol has been visited. As in the case of &, the symbol in I’} may not be
changed. The formal definition follows.

DerinitioN.  For each AFA (£, @), where 2 = (K, 2, Iy | L, , f,, go), let I} = 2,
L= x{1) v I x{IP|vdTy XN x{—,+}) v {0 E}, with 1,4+, —,0,
and E new symbols and N the set of positive integers. Let f be the function from
((I'y X Ny* X I,*) X (Iy X L) into (I} X NY* x I,*) U {2} and let g be the
function from (I X N)* x I'* into the finite subsets of (I} X N)* x I'*
defined as follows (for x, in (I"; X NY*, x;, %5 in [y, voin I'y*, uyin I, ,and i, j in N).

(1) 'The “writing” mode:

a. f((x, va), (1, 1), w)) = (2(xy, 1), falya , o))

b f({(% va) (0, w)) = (%, folys , ua))-

e fl(x ya) (71, D1, #a)) = (x(xy, 1)1, folye s %)), Where folys, u5) = e
{2) The “checking” mode:

. f((x(x, Dxe, )1 Boe) (72,7, =) 1)) = (=1, 9) T (%, 7 + 1)F, )
b f((x(x1,9) T (%2, % €)s (31,5 +), 1)) = (g, £ + D(x2,7) 1 & €).
c. f((*(x,7) 1 & €, (0,1)) = (x(x;,7) 1 % ).

d. f((x(x1,2) 1, €) (B, 1)) = (e, €)-

(3) a. glle ) = {(e o)}
gx(xy 5 1), 72)) = {((x1, 1), ¥) | v 10 go(va)}-
c. gllx(x, ) 1 & €) ={((x,2) 1,

&
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Then (2, @p), where 2, = (K, Z, (11 X N) x Iy, I; X I, f, g) is called the
AFA of “‘auxiliary Z-storage counting checking acceptors.” (We use &, when 2, is
understood.)

Remark. For each D = (K, 21, 8, q5, F) in 9, Gy is finite and there are a
finite number of moves in 8. This implies that the stack pointer can move away from
a stack symbol only a finite number of times in accepting a word.

We note here that &, is technically not an AFA, but it is a special instance of a
structured-storage AFA. Thus #(Z) is a full AFL by Theorem 1 of [3].

As in Section 3, we define a subset of the previously defined AFA. Then we prove
that the two families of acceptors are equivalent, in terms of languages accepted.

DEFINITION. &, is defined to be the family of a auxiliary Z-storage counting
checking acceptors which

(1) do no reading of input while in the writing mode, and

(2) use the E instruction only once in accepting a word.

LemMA 5.1, For each AFA 9, P(D ) = L(Dp)-

Proof. Clearly #(Z,) C #(2p). Consider the reverse inclusion. The proof will
be similar to the proof of Lemma 3.2. If D is in &, , then we construct D’ in &, such
that I nondeterministically writes a word in S(D) on its stack along with the numbers
of the rules which D would use in writing the same word. Then D’ returns to the left
endof theword and checks that the stack word it haswrittencould be written by D. Since
each symbol is scanned once in moving left and once in the process described above,
the count of each symbol used by D’ is two than the count of the corresponding symbol
used by D. Hence #(Zp) C L(Zp).

We now define some terms related to the languages which are written on the
checking stacks of acceptors in &, . After a preliminary lemma, we are able to charac-
terize the family of deterministic two-way a-transducer mappings of languages in

F(D) in terms of L(Z)).

Notation. Let L(D) and S(D) be defined for D in &, exactly as for acceptors in
.. For D in &, let S'(D) = A(S(D)), where k is the homomorphism from
(T, x {1))* to I''* defined by A({x, 1)) = & for each x in I3. Let ¥ (Zp) =
{S'(D)| D in &'p).

Lemma 5.2. For each AFA @, (%) = L(D).

Proof. The writing moves for &,, differ from the writing moves for 9 only in that
all symbols on the checking stack are written with 1 as the second component. There-
fore ' (Zp) = F(F¢). By Lemma 3.2, (D) = L(D), so ' (Zp) = L(D).
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TreoreM 5.1. For each AFA 2, T(L(D)) = L (Dp).

Proof. By Lemmas 5.1 and 5.2, £(2,) = £(Fp) and L(D) = S'(Pp). Thus
we need only establish that TS (D)) = L(Dp). To prove that TS (Dp)) C
H(F ), assume that D is in D, and that Tis in ;. We then construct D’ in &, such
that 7(S'(D)) = L(D'). D’ first simulates D in writing its checking stack word, except
that when D writes (a;, 1) = (a;, 1), D' writes (¢, 1)(@y, 1) - (@, 1)($, 1). Then
D’ moves its pointer left to (¢, 1) and simulates the moves of T on ¢a, - a;$, using
the output of T as input. When T reads $ in an accepting state, then D' reads (§, ) for
some integer ¢, erases its checking stack word, and goes to an accepting state. Since T
is deterministic, each symbol of ¢a, - a,$ will be visited fewer than F#(K,) -+ 1
times, where #(K,) is the number of states of 7. Thus ', in simulating 7', will visit
each symbol on its checking stack fewer than #(K,) + 3 times. So L(D") = T(S'(D))
and D' is in &, . Hence (S (D)) C L(Dp)-

To prove that #(D,) C TLF (D)), assume that D = (K;, 2}, §, py, Fy) is in
P, and that S(D) C (Iy x {1})* is the language D writes on its checking stack. We
define T in J, and a regular substitution ¢ such that L{D) = T(o(S5'(D))). Since T is
deterministic and D is nondeterministic, each word in o(S'(D)) must contain a word
of S(D) as well as information about one path which D may take through that word.
This is done as follows.

For each a in I, let L, be the set of all words (py,%,/1, ks @1, @ by, dy)
(Prm s B s Jm s Bom > Gm s @, By 5 diy), Where for each 2, 1 << <{m, and for each d, in
{—,0, +} (@ns (@ fn, dp), L) is in 8(p,, by, (a,f,) ], €). Also, if d, = 4, then
in+1 =1, sj'n+1 :j'n + 1, and kn < kn+1 CIf dn =0, then in+1 =1, j'n+1 =]n ’
and k,, =k, . M d, = — theni, <i,.,,juy =j.+ 1,and &, =&, . Thenlet
o be the regular substitution defined for each a in Iy by o(@) = aL,. For each
(4., &, ¢, 4, b, d) in a(a), j is used to count the number of moves D has made away
from the symbol a. The integer ¢ is used to count the number of times D has moved
away from the symbol left of @, and & is the number of times D has moved away from
the symbol right of a. If D is in state p, reads b as input and (a, ) on its checking stack,
and moves right to @’ in state ¢, then T reads (p, 7, J, &, ¢, 4, b, +) in state p, writes &,
and moves right to the leftmost symbol in ¢(a’) which has k& 4- 1 as its third component.
(If the first and second components are not g and j, respectively, then T blocks.) Left
moves of D are simulated in a similar manner. That is, if D is in state p, reads (a, 5} on
its checking stack and b as input, and moves left to a” in state g, then T reads (p, ¢, J,
k, g, a, b, —), writes b, and moves left to the leftmost symbol in o(a”) which has ¢ + 1
as its third component. (If ¢ and § are not the first and fourth components, respectively,
of that symbol, then 7 blocks.) If D reads b using a 0-move, then T writes & and moves
right one symbol from (p, ¢, j, %, ¢, a, b, 0) to (g, 4, 4, k, a, b, d).

In this manner, T can deterministically follow the same path through a word in
o(S’(D)) that D follows through a word in S(D), and L(D) = T(a(S'(D)).
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COROLLARY 1. If 2 is a full AFL, then T 4(¥) is a full AFL.

Proof. Since .Z is a full AFL, there exists an AFA @ such that & = £(Z). Then
TAL) = TAL(D)) = £(Dp) is a full AFL, since Fp, is equivalent to an AFA.

CorOLLARY 2. If @ and D' are AFA such that ¥ (D) = L(D'), then
L(Dp) = L(Zp).

Progf. The proof is analogous to the proof of the Corollary to Theorem 3.1.

Remark. The proof of Theorem 4.1 can be modified to show that for each AFA 9,
if #(2) is closed under substitution, then so is £(Zp).

It is known that there are one-letter languages in (&) — £ for some AFL 2.
Greibach [11] proves that L = {a™ | m is not prime} is in %, , the family of checking
acceptor languages. By a remark following the Corollary to Theorem 3.1, T (%) =
%, . Since L is obviously not in &, L is in 7 (#) — #. In contrast, the following
theorem shows that for each full AFL %, all one-letter languages in Z4(.%) are also
inZ.

THEOREM 5.2. IfL is a language in a full AFL. &, Tisin I, and T(L) C b*, then
T(L)isin L.

Proof. LetL be alanguage ina full AFL &, T = (K, ,2,,2,, H;, 5, ¢, §, Fy)
in 7, and T(L) C b*. To prove T(L) in &, we define a regular substitution o on 2;*
and an e-transducer M such that M(c{¢L$)) = T(L). Then T(L)is in 2, since o(¢L$)
is in & and full AFL are closed under a-transducers,

ForainX,,letL, ={(p1, d, P2, b, P5,d) | (p2,a,0,p5,d)isin Hy , pyisin K,
and d’ is in {—, 0, -+-}}. The third and fourth components of these 6-tuples store the
state T is in and the symbol it writes when it reads 4. The fifth and sixth components
store the next state and the direction 7' moves from a. The first and second components
store the previous state and the direction T’ came from in moving to @. For a in 2,
let R, be the set of all words =@, - w,, , wheren > 1, w; is inL,foreachs, 1 <7 < n,
and no state in K; appears more than once as a third component in w, ,..., @, . Note
that for each @, R, is finite, since the number of third components is at most #(K,).
Let o be the regular substitution on 2}* defined for each @ in Z; by o(a) = akR,.

We now describe the one-way a-transducer M which, in one pass, simulates the
passes of 7, and writes the same word in b* that T does. M has, in its states, three
“registers,” K, , K, , and K, . While reading o(a), K, stores the states of T which are
involved in the right moves 7" makes from a, K, stores the states involved in the
0-moves T makes on a, and K, is used to check that the moves made to the symbol
a have been accounted for. Informally, M operates as follows.

On reading (p; , d, o, ¥, Py, d') in a(a), for p;, py, Py states of T, &' in {b} U {e},
and d, d’ in {—, 0, +}, M writes &', moves right one symbol and
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(1) Ifdis +,then(p,, I, p,)isstoredin K, . If d is —, then (p,, 7, po) is deleted
from K, . If d is 0, then (p, , 0, p,) is deleted from K.

(2) If d'is —, then (py, I, py) is deleted from K, . If d’ is +, then (p,, 7, p3)
is stored in K, . If d" is 0, then (p,, O, p) is stored in K.

On reading a in 2, , K, and K|, are checked to verify that they are empty. If not,
then M blocks. If they are empty, then all the triples in K, are moved to K, and K, is
emptied. Then M moves right one square to the first symbol in o(a). The 6-tuple
representing the final visit to $ is marked so that when M reads it in an accepting
state of T, then M goes to an accepting state. Hence, for @ in L, M verifies that o(w)
contains information about a path of T through w, and M writes T(w).

In [13], Rajlich proves that the family of languages generated by the 2ft is properly
contained in the family of languages generated by the 2nft. Using our notation, this
means that .7 (%) C .7 (#). We are now able to prove a more general result.

CorOLLARY. If ¥ is a full subAFL of Lo, then THF)C T (Z).

Proof. Consider the language L = {a™" | m, n > 1}. Since L is a checking acceptor
language [11], L is in .7 (£), and therefore is in .7 (%) for each full AFL 2. But L is
not in 7 (Zcr). For suppose it is. Since L is a one-letter language in F3(Fcg), L is
in Fer, by Theorem 5.2. Thus L is in %, since each context-free language over one
letter is regular [5]. Hence {a” | p prime} U {a}, the complement of L, is also in Z.
But this is a contradiction. Therefore L is not in F{%cp) and so is not in Ty(F), for
each subAFL % of % . Since L is in T (&) — TYULF), Ty(L)C T (Z) for each
subAFL % of %.

6. COMPOSITION OF .4 AND 7,

In this section we study F37YL), T T(L), T37(F), and T T (F), for £ an
AFL. We first prove in Theorem 6.1 that for each full AFL &, 7,7 ,(%) = T(&)
and T T(F) = T (&). The question then arises as to whether 7,9 (&) = J (&)
and T 7(¥) = F(L). There are cases when this is true. For example, by
the Corollary to Theorem 4.3, if & is the largest full subAFL of the extended context-
sensitive languages, then J (%) = #Z. It follows that 7.7 (¥) = 7 (¥) and hence
TT (L) = T(&). On the other hand, there are cases when 77 (¥) # 7 (£) and
TeT (£) = T(F). In Theorem 6.2 we give necessary and sufficient conditions for
T T (L) = F(£). In the Corollary to Theorem 6.2 we show that there are AFL for
which 9,7 (¥) # 7 (&) and hence T F (F) +# T(F).

TuEOREM 6.1. For each full AFL &, T,.T(L) = TAL) and T TL) — T (L).



TWO-WAY A-TRANSDUCERS AND AFL 105

Proof. We first prove that for each full AFL %, J,9,(%) = F4&). Since
TL) C T T (L) for each full AFL %, it suffices to show that F;.THL) C T4(Z).
Let LC X2 * be in & and let Ty and T, be in 7;. We use o, the substitution defined
in Theorem 5.2, and construct T in J; such that Ty(o(L)) = T,Ty(L).

We now informally describe the moves of T, . Let a; - a;, for £ > 0, be a word
in L and let Ty(ay - ay) = by, b, for 1220, Let Tylby - &) = ¢ ¢y,
for m =0, and let y = ¢w.ayw; - qw,$owy be in o(¢a; - @,$). By the definition
of o, a path of T, through &, - @, is incorporated in y. The word b, -+ b, appears as
the fourth component of symbols in o(y), but not necessarily in the same order, from
left to right. (For example, if T} reads a; , writes b, , and then moves left to a;_, , then
b;., will appear as the fourth component of a symbol in o(a,_;), which is to the left
of o(a,).) So T; must simulate the moves of T, as follows. Assume T, is reading a
symbol (py, d, ps, b,, p3, d’) in o(a). To simulate a left move by T, from &,, Tj
uses the leftmost two components, p; and d, to move to the symbol in o(y) which has
P, as its third component. For all the cases which follow, T} also writes the same symbol
that 7, writes while reading b,. If d is —, then 7, moves left to the only symbol
in o(a;_;) which has p, as its third component. If d is 4, then T, moves right to the
only symbol in o(a;,;) which has p, as its third component. If 4 is 0, then T; moves
left one square and that symbol must have p, as its third component. If the desired
symbol is not found, then T blocks.

To simulate a right move by T, from b;, T, writes the same symbol T, writes and
in a manner analogous to that defined above uses last the two components of
(pr,d,ps, b, ps,d’) to find b, . When T, uses a O-move and writes a symbol,
then T uses a 0-move and writes the same symbol.

One problem remains. If T, is simulating a left move of T, as defined above and
finds the proper third component, then the fourth component may be e. In this case
T, must remember, in its state, that it was simulating a left move. On reading e as the
fourth component, T, continues to use the first two components of symbols it reads
until it finds a symbol whose fourth component is not e. If 75 is simulating a right
move, then it uses the last two components until it finds a symbol whose fourth
component is not e.

If T, reaches $§ in an accepting state of T,, then it goes to an accepting state.
Thus Ty(¢waw, - aywbwg) = Ty(by - b)) = TyTy(a; - @) and we have
TiTAL)C TAL)

To prove that 7 (L) = F(F), we use the same proof, noting that 7y is non-
deterministic if 75 is.

For each AFA &, we have defined the structured-storage AFA @, and &, . The
question arises as to the connection between the two AFA. The following corollary
expresses one such connection.

COROLLARY 1. For each AFA @, T (£(Dy)) = L (D).
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Proof. T(L(2p)) = T(THZL(2))), by Theorem 5.1,
= T (Z(2)), by Theorem 6.1,
= P(D.), by Theorem 3.1.

We also have a corollary which is analogous to Theorem 2.1 and the Corollary to
Theorem 2.2.

CoroLLARY 2. If & is an AFL, then T (%) is a full AFL closed under reversal.

Proof. Assume & is an AFL. By Theorem 2.3, T4(¥) = THF(Z)). Therefore
TAL) is a full AFL, since T4(F(£)) is a full AFL by Corollary 1 of Theorem 5.1.

We now show that J4(.%#) is closed under reversal. There exists T'in 7 such that
for all languages L, T(L) = LR. Then for L in TH&F), T(L) = L¥ is in T, THL).
Thus L® is in J4(&), since T3:T(F) = T4(£) by Theorem 6.1, and the proof of the
corollary is complete.

We now consider the case where % is an arbitrary AFL.

COROLLARY 3. For each AFL 2, T,T(%L) = TAL) and TIT(L) = T(&).

Proof. THL) = TAF(Z)), by Theorem 2.3,
= T3 T F(Z)), by Theorem 6.1,
= J37«¥), by Theorem 2.3.

The proof that 7T (&F) = T (&) is analogous.
We now prove a lemma which will enable us to show that there exist families &
for which 7,7 (%) is not equal to .7 (Z).

LemMa 6.1. Let ¥ be a full AFL, L C X,* q language in £, ¢ a symbol not in X, |
and L, = {(we)* | w in L} for each k > 1. Then the following statements are equivalent.

(a) Lisin Ty &F),

(b) Ly isin T(&L) for each k > 1,

(¢) Ly isin T(ZL) for some k > 1, and
(dY L, isin TLL) for some k > 1.

Proof. Obviously (b) implies (c). It thus suffices to prove that (a) implies (b),
(¢) implies (d), and (d) implies (a). To prove that (a) implies (b), assume that L is in
TAL). Then L = Ty L") for some L’ in .& and T in J;. Then for each %, there
exists Ty in 7 such that T simulates T, exactly k times. Then T)(L) =L, and
so Ly, is in ().

To prove that (c) implies (d), assume that L; = T(L") is in J (£) for some & > 1.
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Since T(¥) = T(L(D)) = £(Z¢) for some AFA @, L, = L(D) for some D =
(Ky, 21, 8, py, F)in D¢ . By the construction in Lemma 3.2, we may assume that only
words in L” are written on the checking stack of D. We may also assume that, in
accepting a word, D writes at least one symbol on its checking stack. (If it does not,
then there exists D’ in % such that L(D) == L(D’) and D’ writes at least one word on
its checking stack.) We first show that

(*)
for each word w in L, there is a word ¥ in L” such that if (we)* is accepted

by D with y on its checking stack, then there is an accepting computation
in which D visits each symbol of y at most #(K;) times.

Suppose () is false. Then there is a word @ in L such that for all words y = y; - ¥,
in L”, whenever (wc)* is accepted by D with y on its checking stack, then for some j,
1 <7 <\m, y, is visited more than #(K,) times. Then there exists ¢ in K, such that
the shortest path in accepting (ze)® is (p, , (we)¥, (e, €)) 2= (P, (we)k, (1 ¥m, €)) ¥
(@ we(we), (3 ¥ 1 Ims> ) ¥ (@ (@)™, y1 o 57 " Yms €) 7o
(gr» € (¢, €)) forgpinF, 1 <j<m, 0 <n' <n <k and 2’ and »” terminal subwords
of . Clearly, =’ must equal @". (For if %’ = @”, then D also accepts words of the form
(wwe)r "' (we)?’, where w = @'w’, a contradiction.) Also, » must equal »’. (For
if n # #’, then D also accepts words of the form (wc)*—*—*", a contradiction.) Then
there is a shorter path for accepting (wc)*, namely, (p,, (wc)*, (¢, €)) ¥ (p, (wc)F,
B ¥m 1 ) (g we@e)y (n ¥ ] Ims ) = (@ @ lwes (v
Y1 Vi » €) P~ (gr , & (¢, €)). This is a contradiction. Thus () is true.

Now we show that L, is in £(Zp). We construct D" in @pso that (3, 1) = (¥, 1)
is written on the checking stack of D’ whenever y, - y,, is written on the checking
stack of D. Also, we construct D’ so that the second component of a checking stack
symbol never exceeds #(K,) and D’ simulates the moves of D. By (%), L{(D") = Ly,
so that L, is in F( &) = L(Zp). So (c) implies (d).

Finally, we prove that (d) implies (a). Given L; in F4%¥), we construct an a-
transducer which copies the first subword =, and erases c(wc)*~1. Therefore L is
in Ty(&), since (¥ is a full AFL and is thus closed under a-transducers.

Using the previous lemma, we give necessary and sufficient conditions for
F T (L) = T (L) and TIT(L) = T(&).

THEOREM 6.2. For each AFL #, the following statements are equivalent.

(@) T(L) =TY2L),
(b) TT (L) =T (L), and
() TuT(ZL) =T (2)
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Proof. Since T(¥) = T(F(ZL)) and TF) = T«#(Z)) by Theorem 2.3,
we may assume that & is a full AFL. We first prove that (a) implies (b). If 7(&) =
TD), then TT (&) = T TF). Therefore 75 (L) = (L), since T Ty L) =
7 (£), by Theorem 6.1.

We now prove that (b) implies (¢). If 75 (¥) = T (&), then T,T(¥) = T (L),
since F(F) C T,T7(&L) C T T(L).

Finally, we prove that (c) implies (a). We assume that 7 (&) 7 J4(£) and prove
that 737 (F) = T (£). Since T (L) # T (&), there exists a language L in 7 (&) —
T(&). Let L C Z,* and ¢ be a symbol not in 2, . Then L, = {(wc)? | w in L} is not
in 7 (&), by Lemma 6.1. But L, is in 7,7 (£),since L is in 7 (£) and there exists T in
T such that T'(w) = (wc)? for all w in Z,*. Hence L, is in 73,7 (F) — T (&), so
that 7,7 (%) # T (&).

We are now able to give some examples of AFL for which F,9 (%) £ J(Z).

CoroLLARY., If & is a subAFL of Zep, then T, T(F) + T(¥) and
TI (L) # T (L)

Proof. By the Corollary to Theorem 2.1 and Corollary 2 of Theorem 6.1, it
suffices to prove the corollary for & a full subAFL of Fcg. Since 7, C .7, if L isa
full subAFL of %p, then THL) ¢ I (£). Then, by Theorem 6.2, we have
ToT (L) # T (). Finally, we have 7.7 (£) # T (&), since T (L) C T,7 (£) C
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